Разборы патентов

Разборы патентов поисковых систем для SEO

Google использует статистические методы, такие как интервал Уилсона, для оценки качества контента при малом количестве данных (например, голосов или поведенческих сигналов). Для ранжирования используется пессимистическая оценка (нижняя граница доверительного интервала), …
Анализ патента Google, описывающего механизм ранжирования, который комбинирует внешнюю оценку сайта (Global Ranking) с внутренней оценкой его страниц (Onsite Ranking). Система проверяет, соответствует ли страница, признанная лучшей внутри сайта, общему …
Яндекс патентует метод определения «Параметра Полезности» для результатов поиска (как вертикальных вставок, так и органических результатов) путем активного тестирования. Система намеренно показывает результаты на случайных позициях тестовой группе пользователей и …
Google анализирует два типа данных для определения альтернативных товаров: историю кликов в продуктовом поиске (какие запросы ведут к каким товарам) и логи веб-поиска (как часто пользователи вводят сравнительные запросы, например, …
Google использует комбинацию методов для определения того, ищет ли пользователь информацию о медиаконтенте (ТВ-шоу, фильмы). Система анализирует запросы на наличие медиа-терминов, временных указателей, префиксов и использует машинное обучение (включая анализ …
Google использует алгоритм для идентификации «Классических видео» на платформах типа YouTube. Система анализирует не абсолютное количество просмотров, а долю видео в общем трафике платформы за день. Если видео стабильно поддерживает …
Google анализирует данные сенсоров мобильного устройства за определенный период времени, чтобы определить преобладающий способ передвижения пользователя (например, вождение), игнорируя кратковременные остановки. Эта «преобладающая активность» используется для ранжирования локальных подсказок и …
Google отслеживает сущности (люди, места, медиа), упомянутые в недавних запросах пользователя в рамках одной сессии. При вводе нового запроса система предлагает подсказки, комбинируя стандартные шаблоны запросов (например, "погода в $городе") …
Google использует систему для объяснения, почему две сущности (например, компании) похожи. Вместо очевидных связей (например, «оба являются ресторанами»), система анализирует все общие черты, отфильтровывает слишком частые и слишком редкие, и …
Google анализирует агрегированную историю поисковых сессий, чтобы предсказать, какой запрос пользователь введет следующим. Система может выполнить этот предполагаемый запрос (Inferred Action) заранее и встроить его результаты непосредственно в текущую страницу …
Google динамически определяет предпочитаемую страну пользователя, используя интерфейс поиска (например, google.de) и IP-адрес. Затем система смещает результаты поиска, повышая оценки (Weighting Factor) или позиции (Shifting Factor) контента, связанного с этой …
Google анализирует историю пользователя, время, местоположение и другие сигналы для прогнозирования тем, интересующих пользователя в данный момент. Когда пользователь демонстрирует намерение начать поиск (например, открывает страницу поиска), система может проактивно …
Google использует систему для идентификации таблиц с упорядоченными данными (рейтингами) на веб-страницах. Система анализирует структуру таблицы и контекст страницы (заголовки, окружающий текст, прошлые запросы), чтобы понять, что именно и по …
Google использует модели машинного обучения (например, архитектуру Encoder-Decoder) для анализа контента ресурса и прогнозирования значений критически важных сигналов ранжирования, которые отсутствуют (например, каким был бы анкорный текст ссылок или по …
Google использует механизм для корректировки общих рейтингов сущностей (товаров, услуг, компаний) на основе индивидуальных предпочтений пользователя. Система анализирует текстовые отзывы, чтобы выявить характеристики сущности (например, «цена», «скорость обслуживания») и определить …
Google использует систему для количественной оценки оригинальности контента на уровне сайта. Система анализирует, какая доля контента (n-граммы) на сайте впервые появилась именно на нем, основываясь на дате первого сканирования (Crawl …
Google патентует метод улучшения поиска за счет расширения сущностей в запросах и контенте с помощью Knowledge Graph. Система использует курируемые связи (предикаты) для выявления неявной релевантности. Также вводится «дескриптор релевантности» …
Система идентифицирует цифровой контент по сканированному фрагменту из физического мира, используя не только текст, но и обширный контекст (время, местоположение, историю пользователя). Патент также вводит концепцию «Read Ranking» — отслеживание …
Google автоматически генерирует обучающие данные для систем семантического парсинга, анализируя логи запросов и клики пользователей. Система находит запросы с одинаковым интентом, определяя, что пользователи, вводящие разные запросы, в итоге кликают …
Google анализирует топовые веб-страницы, ранжирующиеся по запросу, чтобы найти упоминания книг. Система рассчитывает, насколько цитируемые книги релевантны контенту этих страниц (Citation Score) и объединяет это с релевантностью самой страницы запросу …