Разборы патентов

Разборы патентов поисковых систем для SEO

Яндекс патентует метод автоматического создания высококачественных «негативных примеров» для обучения своих алгоритмов ранжирования. Система анализирует сессии, где пользователь уточняет свой запрос. Если пользователь переформулировал Запрос 1 в Запрос 2, система …
Патент описывает систему Google для верификации того, что нативное мобильное приложение и соответствующая веб-страница отображают идентичный контент (Consistent Content). Система сравнивает контент, используя N-gram анализ, сопоставление сущностей и сравнение признаков. …
Яндекс патентует метод для глубокого понимания интересов пользователя. Система преобразует разнородные действия (поисковые запросы, посещенные сайты, геолокацию) в векторы и размещает их в многомерном пространстве так, чтобы близость векторов отражала …
Google использует механизм иерархического скоринга для ранжирования сущностей (например, брендов или исполнителей) в вертикальных поисках (non-WWW corpus). Популярность родительской сущности рассчитывается на основе агрегированной популярности дочерних (например, товаров или треков). …
Яндекс патентует метод оптимизации поискового индекса в условиях ограниченных ресурсов. Система оценивает прогнозируемую или фактическую полезность документа (на основе поведения пользователей) и его размер. Используя модифицированный алгоритм LambdaMART, Яндекс ранжирует …
Яндекс патентует метод для построения комплексных профилей пользователей путем преобразования разнородных событий (запросы, посещенные места, просмотры страниц) в векторы в общем многомерном пространстве. Система использует иерархический подход с нейросетями (включая …
Google анализирует вовлеченность пользователей (полезность), сравнивая фактическую удовлетворенность (Good Utilization Events) с ожидаемой вовлеченностью для данной позиции ранжирования. На основе этого рассчитывается Correction Factor для повышения документов, превосходящих ожидания, и …
Google использует систему для индексации содержимого структурированных файлов, таких как KML (географические данные). Система извлекает отдельные элементы данных (например, метки мест) из файла-контейнера и превращает их в самостоятельные поисковые записи. …
Google использует механизм для классификации веб-страниц, основанный на анализе исторических поисковых логов. Система "распространяет" тематическую классификацию с известных сайтов на неизвестные через анализ запросов, по которым они совместно ранжируются, и …
Google генерирует "Связанные запросы", анализируя данные о предпочтениях пользователей (клики, dwell time). Система ищет запросы, которые одновременно связаны с исходным запросом через общие качественные результаты (Quality Score) и привносят новизну …
Google патентует механизм генерации предложений связанных запросов, привязанных к конкретным результатам поиска (сниппетам). Используя модель D-Q-D, основанную на поведении пользователей (клики и время пребывания), система находит альтернативные запросы, которые ведут …
Яндекс патентует метод оценки важности новостных событий для push-уведомлений. Важность рассчитывается как произведение авторитетности источника (Source Weight), определяемой по его реальному трафику (логи браузеров, Метрика, клики из поиска), и свежести …
Google использует алгоритм для идентификации наиболее важных страниц сайта (Primary Resources), которые затем отображаются как Sitelinks в поисковой выдаче. Система строит иерархическую модель сайта на основе структуры URL (а не …
Google использует масштабируемую распределенную систему для анализа огромных графов, таких как Веб-граф (триллионы связей). Система вычисляет кратчайшие пути от каждого узла (сайта) до набора предопределенных авторитетных источников («Seeds»). Эти расстояния …
Яндекс патентует метод селективного индексирования для оптимизации использования хранилища. Система оценивает «полезность» документа (на основе прошлых или прогнозируемых взаимодействий пользователей) и его «стоимость» (размер файла). Алгоритм машинного обучения (Listwise LTR, …
Яндекс патентует механизм внедрения блоков со связанными запросами (например, "Похожие запросы") в основную поисковую выдачу. Позиция этого блока определяется отдельным алгоритмом ранжирования. Ключевым фактором для ранжирования как органических результатов, так …
Яндекс использует технологию для точной идентификации объектов на веб-странице (таких как реклама, логотипы, карты или формы). Система анализирует не только исходный код (HTML/CSS), но и финальный визуальный вид страницы после …
Google использует внешние «офлайн-сигналы» для ранжирования документов с плохой ссылочной структурой (книги, журналы). К ним относятся: попадание в списки бестселлеров (с учетом локации пользователя), данные о тиражах, общие продажи издателя …
Google использует систему для оценки и ранжирования онлайн-сообществ (например, форумов или групп в социальных сетях). Система анализирует, кто участвует в сообществе (их репутацию и экспертизу), как они взаимодействуют (качество и …
Яндекс патентует метод генерации высококачественных обучающих данных для алгоритмов машинного обучения (MLA), определяющих схожесть запросов по тексту. Система находит пары запросов, которые текстуально очень похожи (например, отличаются одним словом), но …