Google использует эту систему, чтобы понять, о какой конкретной сущности (например, месте или человеке) идет речь на веб-странице, особенно когда названия неоднозначны. Система анализирует доминирование упоминаний сущности на странице (соотношения), …
Ссылки
Google обучает свои языковые модели (Трансформеры), интегрируя внешние сигналы, такие как PageRank, авторство, свежесть и вовлеченность, непосредственно в Механизм Внимания (Attention Mechanism). Во время обучения, если контент поступает из авторитетного …
Google собирает комментарии, отзывы и посты в блогах, относящиеся к определенной веб-странице. Система использует сложные алгоритмы для определения основной темы упоминаний (особенно если в них несколько ссылок) и ранжирует эти …
Google использует механизм «Pull-Push» для борьбы с искусственными ссылками, анализируя соотношение между количеством ссылок и реальными кликами по ним. Если ссылки не генерируют пропорциональный трафик (с учетом времени вовлечения), они …
Google анализирует взаимоотношения между администраторами веб-сайтов (используя данные социальных сетей), чтобы определить независимость ссылок или кликов по рекламе. Если обнаружена тесная связь, это интерпретируется как предвзятость (Bias). В результате вес …
Google использует модель машинного обучения для расчета оценки качества сайта (Quality Score). Эта оценка зависит не только от собственных характеристик сайта (например, юзабилити или поведенческих факторов), но и от характеристик …
Google анализирует тексты ссылок (анкоры), ведущих на страницу, чтобы определить ее основную тему или сущность (Unifying Subject). Система выбирает наиболее репрезентативный анкор, используя частотность, авторитетность ссылающихся сайтов (Page Importance Metric) …
Патент Google, описывающий механизм, позволяющий вебмастерам встраивать инструкции непосредственно в HTML-код ссылок. Эти инструкции сообщают поисковой системе, как обрабатывать конкретную ссылку, например, блокировать ее учет или изменять ее вес при …
Google расширяет понимание тематики документа за пределы его контента, анализируя внешние сигналы. Система косвенно выводит концепции, изучая, откуда приходят пользователи (входящие ссылки и запросы), куда они уходят (исходящие ссылки, клики …
Патент Google, описывающий методы автоматического обнаружения синонимов и эквивалентных фраз. Система анализирует последовательные запросы пользователя в рамках одной сессии: если запросы имеют общие слова (контекст), то различающиеся слова считаются потенциальными …
Google использует механизм для борьбы со спамом, который намеренно вносит временные задержки или непредсказуемые колебания (например, временное понижение) в ранг документа после его изменения или получения новых ссылок. Система отслеживает …
Анализ патента Google, описывающего систему оценки качества документов на основе исторических данных. Система анализирует, как контент, ссылки и поведение пользователей меняются с течением времени. Патент описывает механизмы определения свежести контента, …
Анализ патента Google, описывающего метод определения характеристик онлайн-сущностей (сайтов, авторов, организаций) путем анализа характеристик связанных с ними сущностей. Система сравнивает профиль связей сущности с эталонными профилями, чтобы вывести недостающую информацию …
Google анализирует потоки запросов, чтобы определить, когда пользователи целенаправленно ищут конкретный сайт (навигационный интент). Если система подтверждает это через доминирование в кликах, анкорных текстах или совпадение с URL/заголовком, ресурс получает …
Google патентует систему, которая использует модель машинного обучения (часто работающую локально в браузере), обученную на последовательностях действий пользователей. Модель предсказывает, на какую конкретную страницу (Action Interface) пользователь захочет перейти после …
Патент описывает радикально новую архитектуру веба («Generative Navigational Corpus»), где контент-провайдеры предоставляют «сырые» данные (Seed Content), а Большая Фундаментальная Модель (LFM) генерирует веб-страницы, UI и ссылки в реальном времени, адаптируя …
Анализ патента Google, описывающего инфраструктуру для выполнения алгоритмов распространения меток (LPA) на огромных графах. Эта технология позволяет Google эффективно классифицировать веб-страницы и сайты (например, по качеству, тематике или спамности), распространяя …
Google использует метод обнаружения искусственного завышения рейтинга (например, PageRank) путем вычисления математической производной функции ранжирования по отношению к "фактору связности" (coupling factor). Резкие изменения этой производной (сильно положительные или отрицательные) …
Google анализирует набор документов, связанных с целевой страницей (например, другие страницы того же сайта или статьи того же автора). Система вычисляет агрегированную оценку для этого набора, отражающую общую тематическую релевантность …
Google использует географические сигналы ссылающихся сайтов для определения локальной релевантности целевого домена. Система анализирует контент, технические данные и, что важно, географию аудитории ссылающихся ресурсов, чтобы вычислить «Link Based Locale Score». …