Google анализирует визуальные характеристики изображений и строит граф сходства. Релевантные ключевые слова распространяются от размеченных изображений к похожим, но неразмеченным или плохо размеченным изображениям. Это позволяет поисковой системе понять реальное …
Разборы патентов
Анализ патента Google, описывающего систему генерации ответов на предиктивные запросы. Если стандартный поиск неэффективен, Google может обучить модель машинного обучения «на лету» на основе исторических структурированных данных или использовать предобученную …
Google использует механизм, который анализирует медиаконтент (фильмы, шоу), потребляемый пользователем на устройстве (например, телевизоре). Система извлекает контекст (актеры, объекты, сцены, диалоги) в реальном времени и использует его для автоматического дополнения …
Google предсказывает, что пользователь будет искать, сразу после активации функции поиска, но до ввода запроса (Zero-Query Search). Система анализирует текущее местоположение устройства, историю поиска пользователя, его социальные связи и популярность …
Google анализирует агрегированные данные о том, что пользователи делают после клика по результату поиска или подсказке (например, покупка, сохранение, бронирование). Если определенное действие статистически значимо для конкретного результата, Google добавляет …
Яндекс патентует метод определения неизвестной даты создания веб-страницы путем анализа ссылочного графа. Система рассчитывает вероятность существования каждой ссылки на основе разницы в возрасте между страницами, их качества (Q) и скорости …
Google использует систему для определения, когда пользователь ищет список объектов (сущностей). Система анализирует запрос на наличие индикаторов списка («лучшие», «топ»), определяет категорию (например, «фильмы») и извлекает релевантные сущности из топовых …
Яндекс использует вероятностную модель для определения времени создания веб-страницы, анализируя структуру и время появления ссылок в сети. Система находит дату, которая максимизирует вероятность наблюдаемой структуры ссылочного графа. Этот метод позволяет …
Google анализирует временные метки (таймкоды) в комментариях к видео для определения популярных сегментов. Система кластеризует близкие метки, ранжирует сегменты по популярности и выполняет их предварительную загрузку (prefetching). Это позволяет пользователям …
Google анализирует шаблоны в структуре URL сайта (например, поддомены или папки) и сопоставляет их с фактическим контентом страниц. Система вычисляет вероятность того, что определенный шаблон указывает на язык, страну или …
Google анализирует все известные названия (Titles), связанные с локальным бизнесом. Система сравнивает распределение частотности слов в этих названиях с двумя моделями: равномерным распределением (характерно для легитимных данных из разных источников) …
Google использует механизм для улучшения точности распознавания голосовых запросов, содержащих редкие или локально-специфичные термины (например, названия местных бизнесов). Система анализирует местоположение пользователя и применяет иерархические географические модели (район, субрегион, регион), …
Google анализирует визуальные запросы (изображения) для распознавания сущностей (продукты, логотипы, текст, здания). Система находит связанную информацию в индексе (номера телефонов, адреса, URL) и генерирует «действенные результаты» — интерактивные кнопки, позволяющие …
Google использует механизм для расширения поисковых запросов, добавляя синонимы, связанные концепции и альтернативные написания. Патент описывает, как система определяет эти расширения (включая обработку фраз) и как она может представлять их …
Google использует двухэтапную систему оценки для проактивной доставки информации (например, в Google Discover). Сначала система определяет уровень интереса пользователя к сущности (First Score). Затем вычисляется уверенность в необходимости уведомления (Second …
Google использует систему для автоматического определения релевантности местоположения для поисковых запросов, особенно с мобильных устройств. Если запрос имеет локальный интент, система идентифицирует местоположение пользователя (через GPS, сеть или профиль) и …
Google использует технику Minhashing для эффективной кластеризации пользователей на основе схожести их действий (кликов, просмотров, покупок). Этот масштабируемый метод лежит в основе коллаборативной фильтрации и систем рекомендаций (например, Google Discover), …
Google использует многоэтапный процесс для разрешения сущностей (Entity Resolution). Система агрессивно нормализует имена сущностей (удаляя стоп-слова, титулы, знаки препинания и сортируя слова по алфавиту), чтобы сгруппировать потенциальные дубликаты. Затем она …
Патент описывает, как Google автоматически расширяет наборы данных (например, таблицы или списки). Система анализирует существующие сущности и ищет новые похожие элементы в интернете. Для этого используются два ключевых метода: анализ …
Яндекс патентует метод оценки времени создания веб-страниц, когда эта дата неизвестна или недостоверна. Система использует известные даты, извлекает даты из текста («временные выражения»), а затем распространяет эту информацию по графу …

