Google использует итеративный процесс (бутстрэппинг) для распознавания сущностей в документах. Система начинает с известных фактов о сущности, находит документы, которые, вероятно, ссылаются на нее, анализирует эти документы для уточнения модели …
Разборы патентов
Google улучшает результаты поиска музыки, извлекая детали песен (названия, альбомы, продолжительность) из структурированной разметки (например, HTML5 microdata) на веб-страницах. Это позволяет Google отображать прямые ссылки на конкретные песни (вторичные ссылки) …
Google анализирует поведение пользователей (click log data), чтобы определить, как они называют конкретный сайт на своем языке. Если пользователи, вводящие определенный запрос (например, название бренда), доминантно кликают на один и …
Google динамически корректирует ранжирование, определяя потребность запроса в свежести (QDF). Это делается на основе анализа поведения пользователей (QtoA) и всплесков интереса (QFval). Система вычисляет возраст и качество документа (D) и …
Google использует систему машинного обучения для связывания аудиовизуальных признаков видео (цвет, текстура, звук) с ключевыми словами. Это позволяет системе понимать содержание каждого кадра и динамически выбирать для тамбнейла (миниатюры) тот …
Google использует механизм для улучшения ранжирования путем анализа взаимодействия пользователя с документами, email и веб-страницами на его устройстве. Система отслеживает детальные действия, такие как скроллинг, движение мыши, копирование, печать и …
Анализ патента Google, описывающего фундаментальные механизмы Google Search Console. Патент раскрывает, как Google позволяет верифицированным владельцам сайтов выбирать предпочтительный домен (например, с www или без), консолидируя сигналы ранжирования на канонической …
Google анализирует, что пользователи искали в прошлом, просматривая определенную географическую область (например, в Картах). Эта история запросов используется для определения наиболее популярных и релевантных локальных объектов (бизнесов, достопримечательностей) в этой …
Google анализирует главные страницы авторитетных новостных сайтов ("Hub Pages"), чтобы определить важность новостных статей. Чем выше и заметнее расположена ссылка на статью (учитывая позицию, размер шрифта, наличие изображений и сниппетов), …
Яндекс патентует метод оптимизации точности систем бинарной классификации (например, спам/не спам, качественный/некачественный). Система использует "вложенные метрики" (например, Клики и Длинные клики) и итеративно подбирает оптимальные пороги срабатывания для каждой метрики. …
Google использует систему для автоматической генерации движущихся миниатюр (анимированных превью). Система анализирует видео покадрово, оценивая визуальное качество, наличие лиц и движение. Затем она использует метод «скользящего окна» для оценки целых …
Google оптимизирует ресурсы сканирования, используя метрику Важности Страницы (Page Importance Score, например, PageRank). Высоковажные страницы всегда скачиваются заново для обеспечения свежести. Менее важные и стабильные страницы могут быть «переиспользованы» из …
Google использует систему для Автоматизированных Ассистентов, которая ищет ответы не только в общем веб-индексе. Система анализирует текущий контекст пользователя (местоположение, тему диалога) и «активные документы» (открытые веб-страницы, недавно озвученный контент). …
Google использует модели машинного обучения для оценки релевантности пользовательского контента (например, постов в социальных сетях). Система учитывает не только текст поста, но и контекст его автора (биографию, экспертизу, местоположение). Это …
Google использует механизм для повышения точности коротких ответов (Featured Snippets). Вместо того чтобы полагаться только на один источник, система анализирует несколько топовых результатов поиска. Если информация в основном кандидате подтверждается …
Google использует механизм автоматического создания вероятностных словарей для перевода между разными языками и наборами символов. Система анализирует «выровненный текст», в первую очередь анкорные тексты ссылок (Parallel Anchor Text), указывающих на …
Google использует систему ранжирования для локальных услуг (например, в Local Services Ads), которая учитывает доступность исполнителя в реальном времени и его текущее физическое местоположение (GPS), а не только адрес офиса. …
Google использует систему для улучшения поисковых подсказок путем добавления «живого контента». Когда пользователь вводит запрос, система генерирует подсказки и автоматически инициирует «живой запрос» для получения актуальных данных (например, погоды или …
Google использует машинное обучение для анализа изображений и отзывов о местах (например, ресторанах) и связывания их с конкретными атрибутами (например, "есть детское меню", "вид на горы"). При поиске система динамически …
Google использует системы для двустороннего связывания запросов и сущностей. Алгоритмы анализируют релевантность документов запросу и значимость сущности внутри этих документов, чтобы определить главную (Primary) и второстепенные (Secondary) сущности для запроса. …

