Разборы патентов

Разборы патентов поисковых систем для SEO

Google использует механизм переранжирования для обеспечения разнообразия (Diversity) в поисковой выдаче или ленте рекомендаций. Система определяет ключевые признаки (Features) для каждого результата (например, домен, автор, тип контента) и назначает им …
Google анализирует, как пользователи уточняют свои запросы, и строит «Граф Запросов». Этот граф используется двумя способами: 1) Для повышения ранжирования документов (особенно по заголовкам), которые точно соответствуют популярным кластерам запросов, …
Google анализирует историю посещений и действий пользователя в интернете, чтобы выявить незавершенные задачи (например, покупку товара или планирование поездки). Система использует графы вероятностных переходов для моделирования пути пользователя, прогнозирует его …
Google использует механизм для динамического обогащения просматриваемых веб-страниц. Система анализирует контент страницы и персональные данные пользователя (история поиска, местоположение, интересы), формирует комбинированный внутренний поисковый запрос, находит релевантные внешние документы или …
Яндекс патентует метод генерации обучающих данных для систем ранжирования (например, лент рекомендаций). Система определяет последний элемент, с которым взаимодействовал пользователь перед закрытием или обновлением ленты. Элементам, получившим взаимодействие, присваивается «Оценка …
Google использует систему для автоматического извлечения структурированных данных (заголовков и связанных элементов) с целевой страницы. Эти данные организуются в "Навигационные фильтры" — концептуально параллельные списки (например, "Бренды: Canon, Nikon, Sony"). …
Google использует механизм для корректировки показателей популярности документов (например, кликов). Система определяет «широту» (Query Breadth) запроса. Клики, полученные по широким, общим запросам, считаются менее значимыми индикаторами популярности, чем клики по …
Патент Google описывает функцию браузера для контекстного поиска выделенного текста или изображений. Результаты и связанные запросы отображаются в специальной панели без ухода с исходной страницы. Ключевой механизм: Google использует URL …
Патент Google описывает систему ранжирования результатов для сущностей (например, музыка, фильмы, бронирования). Система использует «Меру Эффективности» (Effectiveness Measure), которая учитывает два ключевых фактора: насколько быстро пользователь может получить контент или …
Google использует итеративный процесс для улучшения классификации контента и выявления спама, анализируя поведенческие сигналы (CTR и продолжительность клика). Если пользователи быстро покидают документ или игнорируют его в выдаче, он помечается …
Google оценивает качество сайта не по общему CTR, а по тому, в ответ на какие запросы он получает клики. Система сегментирует пользовательский фидбек (клики, CTR) по различным параметрам запроса (например, …
Google анализирует сессии пользователей для выявления ресурсов, которые часто посещаются последовательно (co-selected). Система строит граф этих связей и распространяет известные тематики (Contextual Profile) авторитетных ресурсов на связанные с ними страницы. …
Яндекс использует сессии, в которых пользователь переформулирует свой запрос, для автоматического создания негативных обучающих примеров. Если пользователь вводит новый запрос (Q2) сразу после предыдущего (Q1), система помечает результаты из первой …
Патент Google описывает систему классификации изображений, которая переносит поведенческие сигналы (клики, наведения) с известных изображений ("Seed Images") на визуально похожие копии. Это позволяет системе идентифицировать нежелательный контент (например, сатирический "spoof" …
Google использует комплексный профиль пользователя (историю поиска, местоположение, социальные связи, календарь, отзывы) для динамического изменения отображения объектов на интерактивных Картах. Система корректирует стандартный рейтинг значимости объектов, делая более заметными те …
Яндекс патентует метод ранжирования и смешивания (Blending), который учитывает визуальный размер (высоту) и позицию элемента на странице выдачи для расчета его «оценки полезности». Система обучается предсказывать, насколько полезным будет элемент …
Google использует статистический анализ для обнаружения спама и переоптимизации. Система определяет ожидаемое количество связанных концепций (фраз) в типичном документе. Если документ содержит неестественно большое количество связанных фраз по сравнению с …
Яндекс патентует метод обучения моделей ранжирования и смешивания (блендинга). Для определения истинной полезности результата (веб-страницы или вертикального блока) система намеренно рандомизирует его позицию в выдаче для тестовой группы пользователей. Анализируя …
Google анализирует логи запросов, чтобы понять, как пользователи переформулируют свои запросы в рамках одной сессии. Система выявляет слова, которые пользователи заменяют друг на друга в одинаковых контекстах, и валидирует их, …
Яндекс патентует метод ранжирования «ненативных» элементов (свежий контент без статистики кликов) в 2D-выдаче (например, Яндекс Картинки). Система обучается предсказывать «Оценку Полезности» нового элемента на разных позициях, анализируя, как пользователи взаимодействуют …