Google отслеживает, посещают ли пользователи географические места после того, как система им их порекомендовала, используя геолокационные данные. Если пользователи определенной группы часто посещают место после рекомендации, Google повышает ранжирование этого …
Поведенческие сигналы
Google анализирует агрегированные данные о взаимодействии пользователей с видео (перемотки, паузы, комментарии, повторные просмотры). На основе этих данных система вычисляет оценки вовлеченности для каждого сегмента. Это позволяет автоматически определять самые …
Анализ основополагающего патента Google, описывающего создание детальных профилей пользователей (Term-based, Category-based, Link-based) на основе их интересов, истории поиска, поведения на сайте и демографии. Эти профили используются для переранжирования органических результатов …
Google анализирует исторические данные о том, как пользователи переформулируют запросы (цепочки запросов), пока не найдут нужный контент. Если многие пользователи начинают с запроса А, переходят к запросу Б и кликают …
Google применяет механизмы для предотвращения «залипания» устаревших результатов в топе выдачи. Система анализирует возраст пользовательских кликов и снижает вес старых данных (временной распад), отдавая приоритет свежим сигналам. Кроме того, система …
Google использует систему для идентификации людей (членов социальной сети), тесно связанных с темой запроса, на основе их активности (посты, взаимодействия, репосты) и квалификации. Система отображает этих людей в специальных блоках …
Google использует механизм для автоматического определения географической релевантности веб-ресурсов путем анализа местоположения их посетителей (через IP-адреса). Система применяет кластерный анализ к этим данным: если аудитория сконцентрирована в определенных регионах, сайт …
Google использует данные датчиков (GPS, акселерометр) для определения текущей физической активности пользователя (ходьба, езда на велосипеде, в машине или автобусе). Эта информация используется в реальном времени для изменения поисковой выдачи: …
Google использует систему для прогнозирования истинного намерения пользователя на основе его текущего контекста (местоположение, время, среда, недавние действия) и исторических данных о поведении других пользователей в аналогичных ситуациях. Система переранжирует …
Google рассчитывает оценки авторитетности для контент-каналов (например, YouTube-каналов), специфичные для разных типов запросов (таких как свежесть или качество). Эти оценки на уровне канала затем присваиваются отдельным видео и используются для …
Google использует механизм для интерпретации поведения пользователей (CTR), который учитывает, как именно представлены результаты поиска. Система рассчитывает ожидаемый CTR для конкретной позиции и визуального оформления (сниппет, выделение). Чтобы получить буст …
Google не присваивает фиксированный вес синонимам (замещающим терминам) при ранжировании. Вес синонима динамически корректируется для каждого документа в зависимости от того, насколько релевантен исходный термин запроса этому документу. Эта релевантность …
Патент описывает механизм интеграции экспертов (Authoritative Users) в поисковую выдачу. Когда запрос совпадает с триггерным запросом, система извлекает пул экспертов и их оценки авторитетности. Этот пул фильтруется с использованием оценок, …
Анализ патента Google, описывающего систему классификации видео (например, на YouTube). Для решения проблемы нехватки размеченных данных система анализирует поведение пользователей: какие видео смотрят последовательно (Co-Watch). На основе этих данных строятся …
Google использует данные о перемещениях пользователей для оценки качества физических локаций (например, ресторанов, магазинов). Система сравнивает, как далеко люди фактически едут до конкретного места (Actual Distance Value), с тем, как …
Google использует механизм для определения того, подразумевает ли запрос (например, «ресторан») поиск локальной информации, даже если местоположение не указано. Система анализирует агрегированное поведение пользователей для расчета «степени неявной локальной релевантности» …
Google использует систему, которая прогнозирует вероятность того, что пользователь совершит покупку у продавца, показанного в результатах поиска (рекламе или органике). На основе этого прогноза система выбирает и отображает визуальный индикатор …
Google генерирует "Связанные запросы" (Related Searches), анализируя, какие еще запросы приводят пользователей к тем же документам, что и исходный запрос. Если Документ X релевантен Запросам A и B, то Запрос …
Google использует машинное обучение для анализа логов поведения пользователей, чтобы понять, что они ищут после посещения определенного контента. Система создает совместное векторное пространство (joint embedding) для документов и запросов, где …
Google использует механизм обобщения запросов для улучшения ранжирования, особенно когда исторических данных по исходному запросу недостаточно. Система создает варианты запроса (удаляя стоп-слова, используя синонимы, стемминг или частичное совпадение) и агрегирует …