Поведенческие сигналы

Google использует Дополненный Граф Ресурсов для расчета независимых от запроса оценок качества страниц. Этот граф объединяет традиционные ссылки с поведенческими данными: запросами, кликами и пользовательскими сессиями. Алгоритм, подобный PageRank, запускается …
Google использует систему для идентификации «триггерных запросов», которые активируют показ списка экспертов или авторитетных пользователей (например, из социальной сети) по данной теме. Система рассчитывает совокупную оценку авторитетности для запроса и …
Патент описывает модификацию алгоритма PageRank. Вместо предположения, что все ссылки на странице имеют равную вероятность клика (модель случайного серфера), система измеряет реальное поведение пользователей. Вес ссылки определяется фактической частотой ее …
Google использует инфраструктуру для масштабируемой оценки электронных документов (включая веб-страницы и рекламу) с помощью распределенной сети асессоров. Система присваивает асессорам «Trust Score» (Оценку Доверия) и агрегирует их отзывы, учитывая контекстуальную …
Google использует статистические модели для прогнозирования того, как асессоры (Quality Raters) оценят релевантность результатов поиска. Модели обучаются на объективных сигналах, включая детальные поведенческие данные: последовательность кликов (Pogo-sticking), время до выбора …
Google использует метрику Reachability Score (Оценка Достижимости) для ранжирования страниц. Эта метрика оценивает, сколько времени пользователь, вероятно, проведет на сайте и сколько связанных ресурсов он посетит, переходя по ссылкам с …
Google анализирует реальные пути навигации пользователей (реферальный трафик) для улучшения выбора контента (например, рекламы). Система извлекает ключевые слова со страницы-источника и взвешивает их на основе трех факторов: близости к кликнутой …
Google использует статистическую модель для оценки качества контента (например, целевых страниц рекламы) на основе поведения пользователей после клика. Система анализирует такие факторы, как время пребывания на странице и последующие действия …
Google использует механизм для повышения качества ранжирования путем анализа надежности (Trustworthiness) различных факторов, влияющих на позицию документа. Если система обнаруживает значительную разницу в надежности сигналов среди результатов поиска, она снижает …
Google анализирует структурно похожие страницы, ссылающиеся на различные ресурсы. Определяя, где известные поисковые запросы (Seed Queries) появляются в структуре этих ссылающихся страниц (например, в заголовках или Title), Google создает шаблоны. …
Google может генерировать «Синтетический Описательный Текст» для страницы, анализируя контент и структуру сайтов, которые на нее ссылаются. Система создает структурные шаблоны для извлечения релевантного текста (например, заголовков или абзацев рядом …
Google использует этот механизм для определения того, какие группы связанных сущностей (например, "Фильмы", "Члены семьи", "Коллеги") показать в Панели Знаний. Система анализирует пути в Графе Знаний, группирует сущности по типу …
Google использует двухэтапный механизм для анализа внешних комментариев (например, блог-постов). Сначала система определяет истинный объект обсуждения, если в комментарии несколько ссылок, анализируя CTR, длину URL и тематику. Затем она оценивает …
Google использует двухэтапный метод доставки результатов поиска через API и виджеты (например, Google Maps) на сторонних сайтах. Сначала отображается только базовое описание результата и присваивается уникальный защищенный токен. Полный контент …
Патент описывает систему (User Distributed Search), интегрированную в инструменты создания контента (например, Gmail, блоги). Google отслеживает, какие ссылки пользователи встраивают в свой контент, используя это как сигнал для ранжирования. Также …
Google патентует архитектуру диалогового поиска («Generative Companion»), которая поддерживает состояние пользователя (контекст, историю запросов и взаимодействий) на протяжении всей сессии. Система использует начальную LLM для генерации «синтетических запросов», классифицирует намерение …
Google может определять релевантность веб-страницы запросу, опираясь на аннотации, заголовки или комментарии, добавленные пользователями в их коллекциях контента ("Web Notebooks"). Этот механизм позволяет странице ранжироваться по терминам, которых нет в …
Google использует механизм для улучшения выдачи по широким (категориальным) запросам. Если система определяет, что пользователь ищет информацию по категории, она продвигает в топ наиболее популярные и авторитетные сайты этой категории. …
Google анализирует поведение пользователей (клики по результатам поиска), чтобы определить, означают ли разные фразы одно и то же, когда они связаны с одним типом сущности (например, «достопримечательности в <Город>» против …
Google использует специализированные AI-модели для разбивки сложных запросов (задач) на подзадачи. Система отслеживает, с какими подзадачами взаимодействует пользователь, и динамически обновляет выдачу, подгружая больше релевантного контента для этой подзадачи прямо …