Google использует Дополненный Граф Ресурсов для расчета независимых от запроса оценок качества страниц. Этот граф объединяет традиционные ссылки с поведенческими данными: запросами, кликами и пользовательскими сессиями. Алгоритм, подобный PageRank, запускается …
Поведенческие сигналы
Google использует систему для идентификации «триггерных запросов», которые активируют показ списка экспертов или авторитетных пользователей (например, из социальной сети) по данной теме. Система рассчитывает совокупную оценку авторитетности для запроса и …
Патент описывает модификацию алгоритма PageRank. Вместо предположения, что все ссылки на странице имеют равную вероятность клика (модель случайного серфера), система измеряет реальное поведение пользователей. Вес ссылки определяется фактической частотой ее …
Google использует инфраструктуру для масштабируемой оценки электронных документов (включая веб-страницы и рекламу) с помощью распределенной сети асессоров. Система присваивает асессорам «Trust Score» (Оценку Доверия) и агрегирует их отзывы, учитывая контекстуальную …
Google использует статистические модели для прогнозирования того, как асессоры (Quality Raters) оценят релевантность результатов поиска. Модели обучаются на объективных сигналах, включая детальные поведенческие данные: последовательность кликов (Pogo-sticking), время до выбора …
Google использует метрику Reachability Score (Оценка Достижимости) для ранжирования страниц. Эта метрика оценивает, сколько времени пользователь, вероятно, проведет на сайте и сколько связанных ресурсов он посетит, переходя по ссылкам с …
Google анализирует реальные пути навигации пользователей (реферальный трафик) для улучшения выбора контента (например, рекламы). Система извлекает ключевые слова со страницы-источника и взвешивает их на основе трех факторов: близости к кликнутой …
Google использует статистическую модель для оценки качества контента (например, целевых страниц рекламы) на основе поведения пользователей после клика. Система анализирует такие факторы, как время пребывания на странице и последующие действия …
Google использует механизм для повышения качества ранжирования путем анализа надежности (Trustworthiness) различных факторов, влияющих на позицию документа. Если система обнаруживает значительную разницу в надежности сигналов среди результатов поиска, она снижает …
Google анализирует структурно похожие страницы, ссылающиеся на различные ресурсы. Определяя, где известные поисковые запросы (Seed Queries) появляются в структуре этих ссылающихся страниц (например, в заголовках или Title), Google создает шаблоны. …
Google может генерировать «Синтетический Описательный Текст» для страницы, анализируя контент и структуру сайтов, которые на нее ссылаются. Система создает структурные шаблоны для извлечения релевантного текста (например, заголовков или абзацев рядом …
Google использует этот механизм для определения того, какие группы связанных сущностей (например, "Фильмы", "Члены семьи", "Коллеги") показать в Панели Знаний. Система анализирует пути в Графе Знаний, группирует сущности по типу …
Google использует двухэтапный механизм для анализа внешних комментариев (например, блог-постов). Сначала система определяет истинный объект обсуждения, если в комментарии несколько ссылок, анализируя CTR, длину URL и тематику. Затем она оценивает …
Google использует двухэтапный метод доставки результатов поиска через API и виджеты (например, Google Maps) на сторонних сайтах. Сначала отображается только базовое описание результата и присваивается уникальный защищенный токен. Полный контент …
Патент описывает систему (User Distributed Search), интегрированную в инструменты создания контента (например, Gmail, блоги). Google отслеживает, какие ссылки пользователи встраивают в свой контент, используя это как сигнал для ранжирования. Также …
Google патентует архитектуру диалогового поиска («Generative Companion»), которая поддерживает состояние пользователя (контекст, историю запросов и взаимодействий) на протяжении всей сессии. Система использует начальную LLM для генерации «синтетических запросов», классифицирует намерение …
Google может определять релевантность веб-страницы запросу, опираясь на аннотации, заголовки или комментарии, добавленные пользователями в их коллекциях контента ("Web Notebooks"). Этот механизм позволяет странице ранжироваться по терминам, которых нет в …
Google использует механизм для улучшения выдачи по широким (категориальным) запросам. Если система определяет, что пользователь ищет информацию по категории, она продвигает в топ наиболее популярные и авторитетные сайты этой категории. …
Google анализирует поведение пользователей (клики по результатам поиска), чтобы определить, означают ли разные фразы одно и то же, когда они связаны с одним типом сущности (например, «достопримечательности в <Город>» против …
Google использует специализированные AI-модели для разбивки сложных запросов (задач) на подзадачи. Система отслеживает, с какими подзадачами взаимодействует пользователь, и динамически обновляет выдачу, подгружая больше релевантного контента для этой подзадачи прямо …