Google использует систему для определения коммерческого намерения пользователя в реальном времени. Система использует предварительно созданный список коммерческих шаблонов, основанный на данных рекламодателей, анализе логов и выявлении манипулятивных техник (например, доменов …
Семантика и интент
Google патентует систему для количественной оценки экспертности авторов по конкретным темам. Система анализирует документы, определяет их тематику (Topic) и вес этой тематики (Weight), а затем учитывает долю вклада (Authorship Percentage) …
Google использует систему для идентификации и ранжирования высококачественного лонгрид-контента (In-Depth Articles). Система определяет авторитетные сайты на основе внешних наград и ссылочных паттернов. Контент оценивается по критериям «вечнозелености» (Evergreen Score), структуры …
Google использует механизм для интерпретации неопределенных запросов или команд (например, «Я голоден» или «Мне скучно»), когда контекст неясен. Если система не может определить конкретное намерение пользователя только из текущего контента …
Google использует механизм для понимания фактов и связей, описанных в свободном (неструктурированном) тексте. Система анализирует слова, окружающие сущность («Контекстное Облако»), и сравнивает этот контекст с тем, как эти слова используются …
Патент описывает комплексную систему перехода от индексации слов к индексации фраз. Google определяет статистическую связь между фразами с помощью меры Information Gain. Эти данные используются для автоматической организации поисковой выдачи …
Google использует этот механизм для анализа логов поисковых запросов и автоматического поиска часто задаваемых вопросов. Система группирует разные варианты одного и того же вопроса в «каноническую форму» путем нормализации текста. …
Google использует адаптивную систему для генерации сниппетов в результатах поиска. Система анализирует тип запроса (например, поиск по автору или по содержанию) и местоположение ключевых слов в документе. На основе этого …
Google использует LLM для анализа сложных, многоаспектных или "шумных" запросов. Система разбивает такой запрос на несколько простых подзапросов, эффективно проверяет их релевантность и разнообразие с помощью эмбеддингов, выполняет поиск по …
Google может использовать явное действие пользователя по копированию дизайна (темы) веб-страницы как сильный сигнал интереса к контенту сайта. Ключевые слова из этого контента добавляются в "персональный индекс" пользователя, который затем …
Google использует механизм для интеграции результатов поиска по нативным приложениям в основную веб-выдачу. Система рассчитывает «Коэффициент вероятности поиска» (Search Probability Ratio), чтобы определить, ищет ли пользователь приложение или веб-страницу. Если …
Google использует этот механизм для ответа на неоднозначные фактические запросы. Система генерирует несколько возможных интерпретаций запроса и ответы из Knowledge Graph. Затем она проверяет, какая интерпретация доминирует в аннотациях (идентифицированных …
Google использует механизм для улучшения локальной выдачи по запросам с неявным локальным интентом. Если результат классифицирован как локальный, но находится далеко от пользователя, система может его понизить. Это происходит, только …
Патент Google описывает систему контекстного поиска, которая предлагает результаты на основе текущих действий пользователя (например, просмотра веб-страницы или звонка). Пользователь может выбрать один из исходных критериев поиска (например, сущность на …
Google решает проблему ранжирования изображений для сложных или редких запросов, для которых нет специализированной модели релевантности. Система тестирует существующие модели, созданные для частей запроса (подзапросов), и выбирает ту, которая лучше …
Google использует ML-систему для прогнозирования эффективности (например, коэффициента конверсии) ключевых слов в Google Ads, особенно для рекламодателей с недостаточными данными. Система анализирует контент сайта, определяет ключевые слова и соотносит их …
Патент Google, описывающий систему агрегации новостного контента из разных жанров (СМИ, блоги, форумы) в единые «Кластеры историй». Система ранжирует эти кластеры, учитывая жанр источника, и применяет сложный алгоритм для ранжирования …
Google использует механизм для определения людей, наиболее релевантных поисковому запросу. Система анализирует контекст вокруг имен в документах, используя «термины классификации» (например, должности, локации, email), чтобы сгруппировать упоминания и различить людей …
Патент описывает инфраструктуру Google для создания высокоточных классификаторов. Он включает метод отбора разнообразных обучающих данных (Bootstrapping/Bucketing) и математическую модель (Monotonic Regression) для объединения оценок от разных классификаторов (например, текста, изображений, …
Google рассчитывает метрику «Webscore» для локальных компаний, основанную на количестве упоминаний их названия в интернете. Эта оценка используется для определения «Популярности» (Prominence) бизнеса и влияет на ранжирование в локальном поиске, …