Яндекс патентует метод персонализации отображения точек интереса (POI) на картах. Система анализирует историю взаимодействия пользователя со всеми сервисами Яндекса (Поиск, Такси, Еда, Музыка и т.д.), чтобы понять его предпочтения. POI …
Рекомендательные системы
Яндекс патентует метод обучения ранжирования (Learning to Rank) через анализ поведения пользователей в выдаче или ленте. Система определяет «Последний просмотренный элемент», с которым пользователь взаимодействовал перед уходом. Выбранные элементы получают …
Яндекс патентует метод персонализации отображения организаций (POI) на Картах. Система агрегирует данные о действиях пользователя в разных сервисах Яндекса (Почта, Такси, Навигатор, Браузер) для понимания его интересов. Используя машинное обучение …
Яндекс патентует систему, которая ранжирует элементы на любом сайте (новости, товары, стили оформления) для конкретного пользователя. Для этого система анализирует историю взаимодействия этого (или похожего) пользователя с другими, совершенно не …
Яндекс патентует двухэтапный механизм для системы рекомендаций контента (например, Дзен). Первый этап – офлайн-квалификация источников: система использует машинное обучение для анализа поведенческих и трафиковых метрик сайта (источники трафика, глубина просмотра, …
Яндекс использует алгоритмы машинного обучения (включая DSSM) для глубокой персонализации Яндекс Карт. Система анализирует действия пользователя во всей экосистеме Яндекса (Поиск, Такси, Еда, Музыка и т.д.) и создает вектор его …
Яндекс патентует метод для рекомендательных систем (например, Дзен), который решает проблему смешивания разных поведенческих сигналов. Вместо использования одной модели для анализа всех взаимодействий (клики, время чтения, лайки), система применяет отдельные, …
Яндекс патентует метод для оценки и продвижения специализированного (нишевого) контента в рекомендательных системах (например, Дзен). Система идентифицирует «ядро аудитории» (подписчиков канала) и принудительно показывает им новый контент. Реакция этой лояльной …
Яндекс патентует механизм кросс-ресурсной персонализации. Система собирает данные о взаимодействиях пользователей с одним ресурсом (например, поисковой системой) и использует эту "контекстную информацию" для ранжирования элементов на совершенно другом ресурсе (например, …
Яндекс патентует метод для систем рекомендаций (например, Видео или Дзен). Система рассчитывает финальный скор схожести (Correspondence Parameter), перемножая количество общих тегов (тематическая близость) на сумму показателей вовлеченности (например, время просмотра) …
Яндекс патентует метод машинного обучения для прогнозирования поведения пользователей. Система одновременно обучается создавать векторные представления (эмбеддинги) действий пользователя и предсказывать следующее действие на основе текущего. Это позволяет системе определять будущий …
Яндекс патентует метод для быстрых и релевантных контентных рекомендаций. Система заранее вычисляет набор общепопулярных материалов (офлайн). В момент запроса пользователя (онлайн) система находит материалы, похожие на его прошлые интересы, исключая …
Яндекс патентует метод генерации обучающих данных для систем ранжирования (например, лент рекомендаций). Система определяет последний элемент, с которым взаимодействовал пользователь перед закрытием или обновлением ленты. Элементам, получившим взаимодействие, присваивается «Оценка …
Яндекс патентует метод для глубокого понимания интересов пользователя. Система преобразует разнородные действия (поисковые запросы, посещенные сайты, геолокацию) в векторы и размещает их в многомерном пространстве так, чтобы близость векторов отражала …
Яндекс патентует метод создания единого векторного пространства (User Item Space), объединяющего данные о поведении пользователей, текстовый контент и изображения. Система обучается понимать связь между разными типами контента (кросс-модальное отображение) на …
Яндекс патентует механизм борьбы с кликбейтом в рекомендательных системах (например, Дзен). Система сравнивает популярность источника контента внутри платформы с его популярностью в интернете в целом. Если источник аномально популярен внутри …
Яндекс патентует двухэтапный механизм для ранжирования в рекомендательных системах. Сначала определяется персонализированная релевантность контента на основе вовлеченности. Затем независимый алгоритм классификации оценивает качество контента и его источника, генерируя «понижающую оценку» …
Яндекс патентует механизм кросс-ресурсного ранжирования. Система анализирует, как пользователь (или похожие на него пользователи) взаимодействовал с другими ресурсами (например, поисковой выдачей), чтобы определить его предпочтения. Затем эти данные используются для …
Яндекс патентует двухэтапную систему для персонализации рекомендаций товаров (например, в Яндекс.Маркете). Система сначала определяет товары, которые часто покупают вместе (на основе истории всех пользователей), а затем агрессивно переранжирует эти товары …
Яндекс патентует метод для рекомендательных систем (например, Дзен), который обрабатывает разные типы взаимодействий пользователя (например, клики и время просмотра) независимо друг от друга с помощью отдельных моделей (SVD, нейросети). Это …