Ранжирование

Яндекс патентует метод ранжирования, который учитывает как общий смысл документа, так и точное вхождение ключевых слов. Система использует три вектора: запроса, документа (для семантики) и специально отобранных фраз из документа …
Яндекс патентует эффективный способ персонализации выдачи с помощью тяжелых нейросетевых моделей (типа BERT/YATI). Система сначала анализирует историю поиска пользователя и текущий запрос (Ступень 1), создавая компактное представление контекста пользователя. Затем …
Яндекс патентует метод для систем рекомендаций (например, Видео или Дзен). Система рассчитывает финальный скор схожести (Correspondence Parameter), перемножая количество общих тегов (тематическая близость) на сумму показателей вовлеченности (например, время просмотра) …
Яндекс патентует метод эффективного расчета сложных факторов ранжирования, зависящих от взаимодействия нескольких слов в запросе (например, их близость друг к другу или совместное вхождение в Title/URL). Система использует данные из …
Яндекс патентует систему автоматического создания «мета-признаков» для улучшения ранжирования. Мета-признак — это относительный фактор, значение которого зависит не только от самого документа, но и от других документов в выдаче по …
Яндекс патентует метод использования «Фактора Привлекательности» (Appeal Factor) в ранжировании. Система использует модель машинного обучения (например, нейросеть), обученную на скриншотах страниц, чтобы предсказать, насколько визуально привлекательной или удобной найдет страницу …
Яндекс патентует метод ранжирования и смешивания (Blending), который учитывает визуальный размер (высоту) и позицию элемента на странице выдачи для расчета его «оценки полезности». Система обучается предсказывать, насколько полезным будет элемент …
Яндекс патентует метод обучения моделей ранжирования и смешивания (блендинга). Для определения истинной полезности результата (веб-страницы или вертикального блока) система намеренно рандомизирует его позицию в выдаче для тестовой группы пользователей. Анализируя …
Яндекс патентует метод ранжирования «ненативных» элементов (свежий контент без статистики кликов) в 2D-выдаче (например, Яндекс Картинки). Система обучается предсказывать «Оценку Полезности» нового элемента на разных позициях, анализируя, как пользователи взаимодействуют …
Яндекс патентует метод оценки важности новостных событий для push-уведомлений. Важность рассчитывается как произведение авторитетности источника (Source Weight), определяемой по его реальному трафику (логи браузеров, Метрика, клики из поиска), и свежести …
Яндекс патентует механизм внедрения блоков со связанными запросами (например, "Похожие запросы") в основную поисковую выдачу. Позиция этого блока определяется отдельным алгоритмом ранжирования. Ключевым фактором для ранжирования как органических результатов, так …
Яндекс патентует метод "Виртуального Ансамбля" для оценки уверенности моделей градиентного бустинга (например, CatBoost) в своих прогнозах. Вместо обучения нескольких моделей, система использует разные срезы (подпоследовательности деревьев) одной обученной модели и …
Яндекс патентует метод ранжирования точек интереса (POI), таких как организации или достопримечательности, на основе их популярности, измеряемой количеством связанных фотографий («Фоторейтинг»). Система агрегирует фотографии, используя не только метаданные (GPS, описание), …
Яндекс патентует метод ранжирования физических локаций (POI) на основе их популярности, измеряемой количеством фотографий объекта в сети. Система использует двухэтапный процесс: сначала идентифицирует фото по метаданным (геотеги, описания), а затем …
Яндекс патентует метод улучшения качества обучения алгоритмов ранжирования (MLA) путем автоматической генерации «сложных» отрицательных примеров (Hard Negatives). Если пользователь в рамках одной сессии уточняет запрос (с Q1 на Q2), система …
Яндекс патентует механизм активного сбора поведенческих данных для документов с недостаточной статистикой. Система использует вспомогательную модель для прогнозирования качества документа (независимо от кликов). Затем ранг документа случайным образом изменяется (повышается …
Яндекс патентует метод ранжирования, учитывающий схожесть между самими документами-кандидатами (D2D proximity). Система генерирует векторы документов и рассчитывает, насколько каждый документ близок к «среднему» результату в выдаче (Reference Vector) или к …
Яндекс патентует анти-фрод механизм, направленный на подозрительные коммерческие сайты (низкое качество, низкий трафик). Система искусственно манипулирует их ранжированием, чередуя периоды повышения и понижения позиций с помощью случайных значений. Цель — …
Яндекс патентует механизм борьбы с кликбейтом в рекомендательных системах (например, Дзен). Система сравнивает популярность источника контента внутри платформы с его популярностью в интернете в целом. Если источник аномально популярен внутри …
Патент раскрывает ключевые механизмы библиотеки CatBoost, основного алгоритма ранжирования Яндекса. Он описывает метод преобразования категориальных факторов (например, URL, доменов, текста запроса) в числовые значения для машинного обучения. Для борьбы с …