Ранжирование

Яндекс патентует метод улучшения ранжирования для новых или редких запросов (проблема «холодного старта»). Система обучается предсказывать поведенческую схожесть запросов на основе их текста. Для нового запроса система находит похожие прошлые …
Яндекс патентует метод обогащения ранжирования за счет использования похожих прошлых запросов. Система определяет схожесть запросов на основе пересечения результатов и поведенческих данных (для известных запросов) или на основе текстовой близости …
Яндекс патентует двухэтапный метод обучения трансформерных моделей (типа BERT/YATI) для предсказания вероятности клика конкретного пользователя на документ. Сначала модель предварительно обучается на широком наборе данных (все показанные результаты), а затем …
Яндекс патентует усовершенствованный алгоритм смешивания (Blender) для определения лучшей позиции элемента (например, виджета или веб-документа) на странице результатов поиска. Вместо одного показателя полезности, система использует мультиклассификационную модель, которая прогнозирует отдельно …
Яндекс патентует архитектуру ранжирования, использующую две ML-модели для глубокой персонализации. Первая модель офлайн обрабатывает долгосрочную историю поиска пользователя, создавая векторный профиль его интересов. Вторая модель в реальном времени использует этот …
Яндекс патентует метод персонализации отображения точек интереса (POI) на картах. Система анализирует историю взаимодействия пользователя со всеми сервисами Яндекса (Поиск, Такси, Еда, Музыка и т.д.), чтобы понять его предпочтения. POI …
Яндекс патентует метод улучшения ранжирования в условиях нехватки данных. Если для пары «запрос-документ» отсутствует значение важного признака (например, CTR), система находит прошлые похожие запросы, по которым этот документ уже показывался …
Яндекс патентует двухкомпонентную ML-архитектуру для глубокой персонализации. Первая модель офлайн обрабатывает долгосрочную историю поиска пользователя (недели/месяцы) и создает сжатый вектор его интересов. Вторая модель в реальном времени использует этот вектор …
Яндекс патентует метод повторного ранжирования, который корректирует оценки основного алгоритма (MLA) с помощью механизма, основанного на памяти (Instance-Based Learning/KNN). Система хранит исторические данные о полезности конкретных пар «запрос-документ» (на основе …
Яндекс патентует метод генерации отсутствующих значений признаков ранжирования (например, поведенческих) для решения проблемы «холодного старта». Если данных по текущему запросу нет, система находит похожие прошлые запросы, по которым документ уже …
Яндекс патентует механизм балансировки между показом проверенных результатов (Эксплуатация) и тестированием новых документов (Экспериментирование), используя подход «Многорукий бандит». Система предсказывает релевантность документов без истории поведения, вычисляет «Оценку эксперимента» и принудительно …
Яндекс использует данные о поведении пользователей в исторических поисковых сессиях для выявления релевантных документов, которые не содержат слов из исходного запроса. Если пользователи часто переходят к ресурсу (в пределах 1-3 …
Яндекс патентует метод ранжирования, учитывающий свежесть пользовательской активности. Система анализирует агрегированную историю просмотров, присваивая более высокий вес страницам, которые посещались или были созданы недавно. Этот "Ранг Свежести Просмотра" (FBR) рассчитывается …
Яндекс прогнозирует популярность контента (например, видео на YouTube), анализируя, как часто его ищут в поиске (Search Logs), посещают через браузер (Browsing Logs, например, Yandex.Browser), и как часто его встраивают (Embeds) …
Яндекс патентует метод повышения скорости и качества ранжирования за счет динамического анализа взаимодействия слов запроса. Система в реальном времени извлекает из инвертированного индекса данные о позициях отдельных слов (query-independent data) …
Яндекс патентует метод расчета авторитетности страниц (Fresh Browse Rank - FBR), который является эволюцией BrowseRank (аналог PageRank на основе логов посещений). FBR учитывает время: он повышает ранг страниц, которые были …
Яндекс патентует метод прогнозирования популярности контента (например, видео или статей). Система агрегирует данные из трех источников: поисковые логи (показы и клики в SERP), логи браузера (прямые посещения) и веб-граф (ссылки …
Яндекс использует алгоритмы машинного обучения (включая DSSM) для глубокой персонализации Яндекс Карт. Система анализирует действия пользователя во всей экосистеме Яндекса (Поиск, Такси, Еда, Музыка и т.д.) и создает вектор его …
Яндекс патентует метод учета визуального представления элементов на SERP (размер сниппета, позиция, расстояние от топа) при обучении ранжирования. Система корректирует оценку полезности элемента, учитывая, как его размер мог повлиять на …
Яндекс патентует метод для оценки и продвижения специализированного (нишевого) контента в рекомендательных системах (например, Дзен). Система идентифицирует «ядро аудитории» (подписчиков канала) и принудительно показывает им новый контент. Реакция этой лояльной …