Поведенческие факторы

Яндекс патентует метод для систем рекомендаций (например, Видео или Дзен). Система рассчитывает финальный скор схожести (Correspondence Parameter), перемножая количество общих тегов (тематическая близость) на сумму показателей вовлеченности (например, время просмотра) …
Яндекс патентует метод генерации и отображения интерактивных подсказок (уточнений запроса) на странице результатов поиска. Подсказки генерируются путем анализа прошлых успешных запросов, их группировки на основе поведенческой схожести (клики на общие …
Яндекс патентует метод машинного обучения для прогнозирования поведения пользователей. Система одновременно обучается создавать векторные представления (эмбеддинги) действий пользователя и предсказывать следующее действие на основе текущего. Это позволяет системе определять будущий …
Яндекс патентует метод для быстрых и релевантных контентных рекомендаций. Система заранее вычисляет набор общепопулярных материалов (офлайн). В момент запроса пользователя (онлайн) система находит материалы, похожие на его прошлые интересы, исключая …
Яндекс использует сессии, в которых пользователь переформулирует свой запрос, для автоматического создания негативных обучающих примеров. Если пользователь вводит новый запрос (Q2) сразу после предыдущего (Q1), система помечает результаты из первой …
Яндекс патентует метод обучения моделей ранжирования и смешивания (блендинга). Для определения истинной полезности результата (веб-страницы или вертикального блока) система намеренно рандомизирует его позицию в выдаче для тестовой группы пользователей. Анализируя …
Яндекс патентует метод ранжирования «ненативных» элементов (свежий контент без статистики кликов) в 2D-выдаче (например, Яндекс Картинки). Система обучается предсказывать «Оценку Полезности» нового элемента на разных позициях, анализируя, как пользователи взаимодействуют …
Яндекс патентует метод автоматического создания высококачественных «негативных примеров» для обучения своих алгоритмов ранжирования. Система анализирует сессии, где пользователь уточняет свой запрос. Если пользователь переформулировал Запрос 1 в Запрос 2, система …
Яндекс патентует метод для глубокого понимания интересов пользователя. Система преобразует разнородные действия (поисковые запросы, посещенные сайты, геолокацию) в векторы и размещает их в многомерном пространстве так, чтобы близость векторов отражала …
Яндекс патентует метод оптимизации поискового индекса в условиях ограниченных ресурсов. Система оценивает прогнозируемую или фактическую полезность документа (на основе поведения пользователей) и его размер. Используя модифицированный алгоритм LambdaMART, Яндекс ранжирует …
Яндекс патентует метод для построения комплексных профилей пользователей путем преобразования разнородных событий (запросы, посещенные места, просмотры страниц) в векторы в общем многомерном пространстве. Система использует иерархический подход с нейросетями (включая …
Яндекс патентует механизм внедрения блоков со связанными запросами (например, "Похожие запросы") в основную поисковую выдачу. Позиция этого блока определяется отдельным алгоритмом ранжирования. Ключевым фактором для ранжирования как органических результатов, так …
Яндекс патентует механизм выбора обогащенного ответа (Rich Suggest) в поисковых подсказках. Система агрегирует вероятность перехода на конкретный ресурс по всем подсказкам, соответствующим введенному префиксу. Обогащенный ответ показывается, только если ресурс, …
Яндекс патентует метод обучения системы исправления опечаток (Spell Correction). Система автоматически генерирует "реалистичные опечатки" для обучения, учитывая как частоту буквосочетаний в языке, так и физическое расстояние между клавишами на клавиатуре. …
Яндекс патентует инфраструктуру для детального логирования и синхронизации поисковых сессий пользователя. Система перехватывает контрольные сообщения между браузером и сервером, сохраняя полную историю взаимодействий (запросы, клики по SERP, навигация, возвраты), включая …
Яндекс патентует метод улучшения качества обучения алгоритмов ранжирования (MLA) путем автоматической генерации «сложных» отрицательных примеров (Hard Negatives). Если пользователь в рамках одной сессии уточняет запрос (с Q1 на Q2), система …
Яндекс патентует метод построения детальных профилей пользователей путем объединения данных из разных источников (например, данные интернет-провайдера и данные Яндекс.Метрики). Система обучает модель на пользователях, о которых известно максимум информации (пересечение …
Яндекс патентует механизм поисковых подсказок (Suggest), который предлагает прямые ссылки на сайты еще до завершения ввода запроса. Система анализирует, какие сайты пользователи посещали ранее после ввода похожих запросов (историческое поведение), …
Яндекс патентует механизм активного сбора поведенческих данных для документов с недостаточной статистикой. Система использует вспомогательную модель для прогнозирования качества документа (независимо от кликов). Затем ранг документа случайным образом изменяется (повышается …
Яндекс патентует механизм кросс-ресурсного ранжирования. Система анализирует, как пользователь (или похожие на него пользователи) взаимодействовал с другими ресурсами (например, поисковой выдачей), чтобы определить его предпочтения. Затем эти данные используются для …