Поведенческие факторы

Яндекс патентует метод оптимизации ранжирования, основанный на детальном анализе поведения пользователей после просмотра выдачи («параметры постпросмотра»). Система автоматически определяет вес различных поведенческих сигналов (клики, время просмотра, пропуски, удовлетворяющие клики) для …
Яндекс использует механизм для корректировки оценки качества сайта, сравнивая ее с эталонным значением, ожидаемым для сайтов с аналогичным объемом трафика или уровнем лояльности. Если сайт показывает аномально высокие метрики качества …
Патент раскрывает ядро алгоритма CatBoost — основного метода машинного обучения Яндекса для ранжирования. Он описывает, как система преобразует категориальные признаки (например, URL, домен, регион) в числовые значения. Чтобы избежать переобучения …
Яндекс использует многоэтапный процесс для обучения трансформерных моделей (типа BERT/YATI). Модель сначала обучается на миллиардах кликов (прогнозируя поведение), затем дообучается на миллионах оценок асессоров (понимая качество). Ключевой этап — перенос …
Яндекс применяет двухкомпонентную систему машинного обучения для персонализации выдачи. Первая модель агрегирует долгосрочную историю поиска пользователя в компактное векторное представление (профиль интересов). Вторая модель в реальном времени использует этот вектор …
Яндекс патентует метод обогащения инвертированного индекса поведенческими данными. Если пользователи кликают на документ, в котором отсутствует один из терминов запроса (найденный благодаря «Правилу Кворума»), система добавляет в индекс «неявную словопозицию» …
Яндекс патентует метод генерации факторов ранжирования, называемых «векторами аннотации». Система анализирует все прошлые запросы, по которым пользователи находили конкретный документ, изучает лингвистические характеристики этих запросов и фиксирует поведение пользователей (клики, …
Яндекс использует механизм переранжирования, основанный на исторических данных (логи поведения или оценки асессоров). Система находит прошлые пары «запрос-документ», похожие на текущую ситуацию. Если прошлая пара была высоко оценена (например, имела …
Яндекс патентует метод генерации «Аннотационных векторов» для документов. Эти векторы агрегируют лингвистические характеристики всех запросов, по которым пользователи находили документ, и связанные с ними поведенческие метрики (CTR, Dwell Time). Система …
Яндекс использует механизм «Exploration vs. Exploitation» для решения проблемы «холодного старта» новых документов, у которых нет накопленных поведенческих данных. Система предсказывает их потенциальную релевантность на основе контента и структуры, вычисляет …
Яндекс патентует метод клиентской персонализации. Система отслеживает детальные взаимодействия пользователя (скорость скроллинга, движения мыши, копирование текста) прямо на его устройстве. На основе этих данных локально обучается персональная модель ранжирования. Затем …
Яндекс патентует метод создания «Аннотированного Поискового Индекса». Если пользователи в рамках одной поисковой сессии переходят с релевантной страницы на другую и проводят там значительное время (например, более 30 секунд), вторая …
Яндекс патентует метод автоматического определения важности (веса) различных поведенческих сигналов (клики, dwell time, пропуски). Система создает и оптимизирует «Целевую функцию», которая оценивает релевантность на основе этих сигналов. Затем эта функция …
Яндекс патентует технологию автоматической идентификации ключевых подразделов сайта. Система определяет эти разделы независимо от владельца ресурса, используя критерии популярности и удобства использования. Затем она предоставляет пользователю прямые ссылки на эти …
Яндекс патентует метод улучшения ранжирования для новых или редких запросов. Система использует модель (Second MLA), обученную предсказывать поведенческую схожесть запросов на основе их текста. Для нового запроса находятся похожие прошлые …
Патент Яндекса, лежащий в основе алгоритма CatBoost, описывает методы обработки категориальных признаков (таких как URL, домены, имена авторов) в машинном обучении. Система преобразует эти признаки в числа, используя упорядоченную статистику …
Яндекс патентует метод улучшения ранжирования для новых или редких запросов (проблема «холодного старта»). Система обучается предсказывать поведенческую схожесть запросов на основе их текста. Для нового запроса система находит похожие прошлые …
Яндекс патентует систему динамического уточнения поисковой выдачи в реальном времени. Система отслеживает микровзаимодействия пользователя (скроллинг, выделение, остановка внимания) с конкретными словами или фразами в сниппетах. На основе этих сигналов вычисляется …
Яндекс патентует усовершенствованный алгоритм смешивания (Blender) для определения лучшей позиции элемента (например, виджета или веб-документа) на странице результатов поиска. Вместо одного показателя полезности, система использует мультиклассификационную модель, которая прогнозирует отдельно …
Яндекс патентует архитектуру ранжирования, использующую две ML-модели для глубокой персонализации. Первая модель офлайн обрабатывает долгосрочную историю поиска пользователя, создавая векторный профиль его интересов. Вторая модель в реальном времени использует этот …