Яндекс патентует метод оптимизации ранжирования, основанный на детальном анализе поведения пользователей после просмотра выдачи («параметры постпросмотра»). Система автоматически определяет вес различных поведенческих сигналов (клики, время просмотра, пропуски, удовлетворяющие клики) для …
Обучение моделей
Патент раскрывает ядро алгоритма CatBoost — основного метода машинного обучения Яндекса для ранжирования. Он описывает, как система преобразует категориальные признаки (например, URL, домен, регион) в числовые значения. Чтобы избежать переобучения …
Яндекс патентует систему автоматического создания «мета-признаков» для улучшения ранжирования. Эти признаки рассчитываются не изолированно для документа, а в контексте всей поисковой выдачи (SERP). Например, система оценивает значение фактора (скажем, CTR) …
Яндекс патентует систему прогнозирования популярности контента (например, просмотров видео), особенно размещенного на внешних платформах. Система агрегирует данные из трех источников: поисковые логи (клики в SERP), логи браузера (прямые заходы) и …
Яндекс использует многоэтапный процесс для обучения трансформерных моделей (типа BERT/YATI). Модель сначала обучается на миллиардах кликов (прогнозируя поведение), затем дообучается на миллионах оценок асессоров (понимая качество). Ключевой этап — перенос …
Яндекс патентует метод автоматического определения важности (веса) различных поведенческих сигналов (клики, dwell time, пропуски). Система создает и оптимизирует «Целевую функцию», которая оценивает релевантность на основе этих сигналов. Затем эта функция …
Яндекс патентует метод улучшения ранжирования для новых или редких запросов. Система использует модель (Second MLA), обученную предсказывать поведенческую схожесть запросов на основе их текста. Для нового запроса находятся похожие прошлые …
Патент Яндекса описывает многоэтапный процесс обучения моделей ранжирования (вероятно, трансформеров типа YATI). Система сначала обучается на огромном массиве данных о кликах пользователей, а затем дообучается на меньшем, но более качественном …
Патент Яндекса, лежащий в основе алгоритма CatBoost, описывает методы обработки категориальных признаков (таких как URL, домены, имена авторов) в машинном обучении. Система преобразует эти признаки в числа, используя упорядоченную статистику …
Яндекс патентует двухэтапный метод обучения трансформерных моделей (типа BERT/YATI) для предсказания вероятности клика конкретного пользователя на документ. Сначала модель предварительно обучается на широком наборе данных (все показанные результаты), а затем …
Яндекс патентует усовершенствованный алгоритм смешивания (Blender) для определения лучшей позиции элемента (например, виджета или веб-документа) на странице результатов поиска. Вместо одного показателя полезности, система использует мультиклассификационную модель, которая прогнозирует отдельно …
Яндекс патентует метод обучения ранжирования (Learning to Rank) через анализ поведения пользователей в выдаче или ленте. Система определяет «Последний просмотренный элемент», с которым пользователь взаимодействовал перед уходом. Выбранные элементы получают …
Яндекс патентует двухкомпонентную ML-архитектуру для глубокой персонализации. Первая модель офлайн обрабатывает долгосрочную историю поиска пользователя (недели/месяцы) и создает сжатый вектор его интересов. Вторая модель в реальном времени использует этот вектор …
Яндекс патентует метод персонализации поиска, при котором анализ поведения пользователя происходит прямо на его устройстве (на стороне клиента), а не на сервере. Система отслеживает микровзаимодействия (движение мыши, скорость скроллинга, копирование …
Яндекс прогнозирует популярность контента (например, видео на YouTube), анализируя, как часто его ищут в поиске (Search Logs), посещают через браузер (Browsing Logs, например, Yandex.Browser), и как часто его встраивают (Embeds) …
Яндекс патентует метод прогнозирования популярности контента (например, видео или статей). Система агрегирует данные из трех источников: поисковые логи (показы и клики в SERP), логи браузера (прямые посещения) и веб-граф (ссылки …
Яндекс патентует метод для рекомендательных систем (например, Дзен), который решает проблему смешивания разных поведенческих сигналов. Вместо использования одной модели для анализа всех взаимодействий (клики, время чтения, лайки), система применяет отдельные, …
Яндекс патентует метод учета визуального представления элементов на SERP (размер сниппета, позиция, расстояние от топа) при обучении ранжирования. Система корректирует оценку полезности элемента, учитывая, как его размер мог повлиять на …
Яндекс патентует метод оценки интересов пользователя путем перевода разнородных событий (поисковые запросы, посещенные сайты, геолокация) в единое векторное пространство. Система использует иерархию нейронных сетей для создания эмбеддингов, отражающих поведение на …
Яндекс патентует систему автоматического создания «мета-признаков» для улучшения ранжирования. Мета-признак — это относительный фактор, значение которого зависит не только от самого документа, но и от других документов в выдаче по …