Яндекс использует механизм «Exploration vs. Exploitation» для решения проблемы «холодного старта» новых документов, у которых нет накопленных поведенческих данных. Система предсказывает их потенциальную релевантность на основе контента и структуры, вычисляет …
Холодный старт
Яндекс патентует метод улучшения ранжирования для новых или редких запросов. Система использует модель (Second MLA), обученную предсказывать поведенческую схожесть запросов на основе их текста. Для нового запроса находятся похожие прошлые …
Яндекс патентует метод улучшения ранжирования для новых или редких запросов (проблема «холодного старта»). Система обучается предсказывать поведенческую схожесть запросов на основе их текста. Для нового запроса система находит похожие прошлые …
Яндекс патентует метод обогащения ранжирования за счет использования похожих прошлых запросов. Система определяет схожесть запросов на основе пересечения результатов и поведенческих данных (для известных запросов) или на основе текстовой близости …
Яндекс патентует метод улучшения ранжирования в условиях нехватки данных. Если для пары «запрос-документ» отсутствует значение важного признака (например, CTR), система находит прошлые похожие запросы, по которым этот документ уже показывался …
Яндекс патентует метод генерации отсутствующих значений признаков ранжирования (например, поведенческих) для решения проблемы «холодного старта». Если данных по текущему запросу нет, система находит похожие прошлые запросы, по которым документ уже …
Яндекс патентует систему, которая ранжирует элементы на любом сайте (новости, товары, стили оформления) для конкретного пользователя. Для этого система анализирует историю взаимодействия этого (или похожего) пользователя с другими, совершенно не …
Яндекс патентует механизм балансировки между показом проверенных результатов (Эксплуатация) и тестированием новых документов (Экспериментирование), используя подход «Многорукий бандит». Система предсказывает релевантность документов без истории поведения, вычисляет «Оценку эксперимента» и принудительно …
Яндекс патентует метод для оценки и продвижения специализированного (нишевого) контента в рекомендательных системах (например, Дзен). Система идентифицирует «ядро аудитории» (подписчиков канала) и принудительно показывает им новый контент. Реакция этой лояльной …
Яндекс патентует метод приоритизации сканирования новых страниц. Система прогнозирует не только общую будущую популярность (количество визитов) страницы, но и скорость, с которой этот интерес будет угасать. Страницы, которые, как ожидается, …
Яндекс патентует механизм кросс-ресурсной персонализации. Система собирает данные о взаимодействиях пользователей с одним ресурсом (например, поисковой системой) и использует эту "контекстную информацию" для ранжирования элементов на совершенно другом ресурсе (например, …
Яндекс патентует метод ранжирования «ненативных» элементов (свежий контент без статистики кликов) в 2D-выдаче (например, Яндекс Картинки). Система обучается предсказывать «Оценку Полезности» нового элемента на разных позициях, анализируя, как пользователи взаимодействуют …
Яндекс патентует метод создания единого векторного пространства (User Item Space), объединяющего данные о поведении пользователей, текстовый контент и изображения. Система обучается понимать связь между разными типами контента (кросс-модальное отображение) на …
Яндекс патентует метод построения детальных профилей пользователей путем объединения данных из разных источников (например, данные интернет-провайдера и данные Яндекс.Метрики). Система обучает модель на пользователях, о которых известно максимум информации (пересечение …
Яндекс патентует механизм активного сбора поведенческих данных для документов с недостаточной статистикой. Система использует вспомогательную модель для прогнозирования качества документа (независимо от кликов). Затем ранг документа случайным образом изменяется (повышается …
Яндекс патентует механизм Активного Обучения (Active Learning) для сбора поведенческих данных о документах, по которым мало статистики. Система определяет вероятность принадлежности документа к определенному классу качества (например, "Хороший") и искусственно …
Патент раскрывает ключевые механизмы библиотеки CatBoost, основного алгоритма ранжирования Яндекса. Он описывает метод преобразования категориальных факторов (например, URL, доменов, текста запроса) в числовые значения для машинного обучения. Для борьбы с …
Яндекс патентует механизм кросс-ресурсного ранжирования. Система анализирует, как пользователь (или похожие на него пользователи) взаимодействовал с другими ресурсами (например, поисковой выдачей), чтобы определить его предпочтения. Затем эти данные используются для …
Яндекс патентует систему для выравнивания качества сайта и объема его трафика. Система рассчитывает «Сырую оценку качества» на основе поведенческих метрик и сравнивает ее с «Эталонной оценкой», ожидаемой для данного уровня …
Яндекс патентует механизм обратной связи для корректировки ранжирования на основе соотношения качества сайта и объема его трафика. Система рассчитывает «Необработанную оценку качества» и сравнивает ее с эталонной кривой, показывающей ожидаемое …