Google анализирует активность пользователя (поиск, email, карты, календарь) для построения персонального графа интересов (User Attribute Graph). Система классифицирует эти интересы как краткосрочные (например, планирование отпуска) или долгосрочные (например, хобби). При …
Поведенческие сигналы
Google использует архитектуру, которая одновременно применяет множество стратегий (расширение, уточнение, синтаксис, анализ сессий) для генерации альтернативных запросов. Система оценивает качество этих вариантов с помощью показателей уверенности, основанных на поведении пользователей …
Фундаментальный патент Google (с приоритетом от 2001 года), описывающий интеграцию статистики использования в ранжирование. Система рассчитывает Usage Score на основе частоты посещений (Visit Frequency), количества уникальных пользователей (Unique Users) и …
Google использует этот механизм для динамической адаптации алгоритма ранжирования к специфике конкретного запроса. Система анализирует, какие факторы оказали наибольшее влияние на формирование первичной выдачи по сравнению с историческими данными. Если …
Google применяет медицинский подход "дифференциальной диагностики" к поисковым подсказкам. Когда пользователь вводит симптом, система предлагает уточняющие запросы (например, "кашель с мокротой"), чтобы исключить возможные заболевания. Если пользователь игнорирует подсказку, система …
Google анализирует поведение пользователей в поиске по картинкам, чтобы определить связь между изображениями. Если пользователи часто кликают на изображение А и изображение Б в рамках одной сессии поиска и в …
Google использует систему машинного обучения для создания модели ранжирования, которая предсказывает вероятность клика пользователя по документу. Модель обучается на огромных массивах данных о прошлых поисках (запросы, документы, клики). Система учитывает …
Google анализирует коммуникации пользователя (email, сообщения) для выявления планируемых событий (встречи, поездки). Система присваивает событию динамический уровень достоверности, который обновляется по мере поступления новых данных (ответы в переписке, поисковые запросы …
Google использует интерактивные уточнения (метки или фильтры) на странице результатов поиска для определения намерения пользователя. Когда пользователь взаимодействует с уточнением, Google объединяет исходный запрос с новым тематическим контекстом метки. Это …
Google использует «гибридные запросы» (например, «тема + бренд» или «тема + автор») для выявления авторитетных источников и экспертов. Анализируя логи запросов и клики пользователей, система создает ассоциации между темами и …
Анализ патента Google, описывающего систему автоматического дополнения метаданных для видео. Система строит граф сходства, используя как анализ аудиовизуального контента, так и поведенческие сигналы (co-play counts – совместные просмотры). Этот граф …
Google использует систему Reinforcement Learning для динамической адаптации поисковых процессов. Система анализирует поисковые сессии (последовательности запросов и кликов) и учится оптимизировать выдачу, чтобы пользователь быстрее находил нужный результат. Это достигается …
Google использует метод стемминга, основанный на поведении пользователей и категориях сущностей. Если пользователи ищут разные слова (например, «пицца» и «пиццерия») и выбирают результаты одной категории («ресторан»), система идентифицирует эти слова …
Патент Google, описывающий механизм персонализации поиска путем модификации алгоритма PageRank. Система определяет "точку зрения" пользователя (Point-of-View Data) на основе его истории посещений, закладок или указанных категорий. Затем стандартный расчет PageRank …
Google анализирует, с какими рекламными объявлениями (и их ключевыми словами) пользователи взаимодействуют при просмотре видео. Если реклама с определенными ключевыми словами показывает высокую эффективность (CTR), эти ключевые слова ассоциируются с …
Патент Google, описывающий систему ранжирования каналов на видеохостингах (например, YouTube). Система определяет «качество» канала на основе поведения пользователей, в частности, используя данные об оттоке подписчиков (subscriber churn) и вовлеченности. При …
Google использует многоуровневую систему персонализации. Сначала органическая выдача адаптируется под интересы пользователя (User Profile). Затем контент этой персонализированной выдачи анализируется для создания Профиля Поиска (Search Profile). Именно этот профиль, отражающий …
Google использует механизм для корректировки поисковой выдачи на основе поведения групп пользователей (популяций), к которым принадлежит автор запроса. Система анализирует данные о кликах (clickthrough data) конкретной популяции (например, пользователи из …
Google генерирует блок "Связанные вопросы" (PAA), определяя, какие прошлые запросы приводили пользователей на те же URL, что и текущий запрос. Для обеспечения разнообразия система использует "Граф вопросов", где семантически близкие …
Google использует механизм для уточнения ранжирования изображений путем перекрестной проверки поведенческих сигналов (например, кликов) и данных о визуальном сходстве. Если изображение часто выбирается пользователями И визуально похоже на другие релевантные …