Google анализирует агрегированную историю поисковых сессий, чтобы предсказать, какой запрос пользователь введет следующим. Система может выполнить этот предполагаемый запрос (Inferred Action) заранее и встроить его результаты непосредственно в текущую страницу …
Поведенческие сигналы
Google анализирует историю пользователя, время, местоположение и другие сигналы для прогнозирования тем, интересующих пользователя в данный момент. Когда пользователь демонстрирует намерение начать поиск (например, открывает страницу поиска), система может проактивно …
Google использует модели машинного обучения (например, архитектуру Encoder-Decoder) для анализа контента ресурса и прогнозирования значений критически важных сигналов ранжирования, которые отсутствуют (например, каким был бы анкорный текст ссылок или по …
Google использует механизм для корректировки общих рейтингов сущностей (товаров, услуг, компаний) на основе индивидуальных предпочтений пользователя. Система анализирует текстовые отзывы, чтобы выявить характеристики сущности (например, «цена», «скорость обслуживания») и определить …
Система идентифицирует цифровой контент по сканированному фрагменту из физического мира, используя не только текст, но и обширный контекст (время, местоположение, историю пользователя). Патент также вводит концепцию «Read Ranking» — отслеживание …
Google автоматически генерирует обучающие данные для систем семантического парсинга, анализируя логи запросов и клики пользователей. Система находит запросы с одинаковым интентом, определяя, что пользователи, вводящие разные запросы, в итоге кликают …
Google анализирует поведение пользователей (click log data), чтобы определить, как они называют конкретный сайт на своем языке. Если пользователи, вводящие определенный запрос (например, название бренда), доминантно кликают на один и …
Google динамически корректирует ранжирование, определяя потребность запроса в свежести (QDF). Это делается на основе анализа поведения пользователей (QtoA) и всплесков интереса (QFval). Система вычисляет возраст и качество документа (D) и …
Google использует систему машинного обучения для связывания аудиовизуальных признаков видео (цвет, текстура, звук) с ключевыми словами. Это позволяет системе понимать содержание каждого кадра и динамически выбирать для тамбнейла (миниатюры) тот …
Google использует механизм для улучшения ранжирования путем анализа взаимодействия пользователя с документами, email и веб-страницами на его устройстве. Система отслеживает детальные действия, такие как скроллинг, движение мыши, копирование, печать и …
Google анализирует, что пользователи искали в прошлом, просматривая определенную географическую область (например, в Картах). Эта история запросов используется для определения наиболее популярных и релевантных локальных объектов (бизнесов, достопримечательностей) в этой …
Google использует систему для автоматической генерации движущихся миниатюр (анимированных превью). Система анализирует видео покадрово, оценивая визуальное качество, наличие лиц и движение. Затем она использует метод «скользящего окна» для оценки целых …
Google использует систему для Автоматизированных Ассистентов, которая ищет ответы не только в общем веб-индексе. Система анализирует текущий контекст пользователя (местоположение, тему диалога) и «активные документы» (открытые веб-страницы, недавно озвученный контент). …
Google использует систему ранжирования для локальных услуг (например, в Local Services Ads), которая учитывает доступность исполнителя в реальном времени и его текущее физическое местоположение (GPS), а не только адрес офиса. …
Google использует систему для улучшения поисковых подсказок путем добавления «живого контента». Когда пользователь вводит запрос, система генерирует подсказки и автоматически инициирует «живой запрос» для получения актуальных данных (например, погоды или …
Google использует фундаментальную архитектуру для персонализации поиска. Система собирает историю действий пользователя (запросы, клики по результатам и рекламе, просмотренные страницы) с разных устройств и браузеров. Эти фрагментированные данные объединяются в …
Google использует механизм диффузии для улучшения ранжирования в поиске по картинкам. Система строит граф визуально похожих изображений и распространяет оценки релевантности, основанные на поведении пользователей (клики, dwell time), по этому …
Google использует графовую модель Маркова (Markov Model) для кластеризации поисковых подсказок. Система анализирует, какие запросы пользователи вводят в рамках одной сессии (session co-occurrence) и на какие документы они кликают (click-through …
Google использует гибридный подход для генерации рекомендаций контента. Система динамически переключается между внешними данными (например, ТВ-рейтингами) и поведенческими данными (поисковые запросы, клики). Для нового контента приоритет отдается внешним данным и …
Google анализирует, насколько хорошо веб-страница представляет выбранное изображение («image-centricity»). Если изображение на странице качественное, заметное и удовлетворяет интент пользователя (на основе статических и поведенческих данных), Google направляет трафик из Поиска …