SERP

Патент описывает модификацию алгоритма PageRank. Вместо предположения, что все ссылки на странице имеют равную вероятность клика (модель случайного серфера), система измеряет реальное поведение пользователей. Вес ссылки определяется фактической частотой ее …
Google может генерировать «Синтетический Описательный Текст» для страницы, анализируя контент и структуру сайтов, которые на нее ссылаются. Система создает структурные шаблоны для извлечения релевантного текста (например, заголовков или абзацев рядом …
Патент Google описывает два ключевых механизма. Первый — автоматическое расширение набора запросов (триггеров), активирующих структурированные карточки, с помощью графового анализа и передачи весов между запросами и сущностями. Второй — процесс …
Патент Google, описывающий механизм создания Sitelinks (быстрых ссылок). Система анализирует поведение пользователей (клики, время на странице) и другие сигналы качества (входящие ссылки, вероятность конверсии), чтобы определить наиболее полезные внутренние страницы …
Google анализирует, как пользователи уточняют свои запросы, и строит «Граф Запросов». Этот граф используется двумя способами: 1) Для повышения ранжирования документов (особенно по заголовкам), которые точно соответствуют популярным кластерам запросов, …
Google патентует механизм генерации предложений связанных запросов, привязанных к конкретным результатам поиска (сниппетам). Используя модель D-Q-D, основанную на поведении пользователей (клики и время пребывания), система находит альтернативные запросы, которые ведут …
Google использует алгоритм для идентификации наиболее важных страниц сайта (Primary Resources), которые затем отображаются как Sitelinks в поисковой выдаче. Система строит иерархическую модель сайта на основе структуры URL (а не …
Google использует систему для оценки и ранжирования онлайн-сообществ (например, форумов или групп в социальных сетях). Система анализирует, кто участвует в сообществе (их репутацию и экспертизу), как они взаимодействуют (качество и …
Google использует систему для понимания локальных запросов, которые явно не указывают категорию места (например, «где поесть рис с бобами?»). Система анализирует тексты веб-страниц и отзывы, чтобы связать фразы (N-граммы) с …
Google использует этот механизм для динамической адаптации алгоритма ранжирования к специфике конкретного запроса. Система анализирует, какие факторы оказали наибольшее влияние на формирование первичной выдачи по сравнению с историческими данными. Если …
Google генерирует блок "Связанные вопросы" (PAA), определяя, какие прошлые запросы приводили пользователей на те же URL, что и текущий запрос. Для обеспечения разнообразия система использует "Граф вопросов", где семантически близкие …
Google анализирует, какие запросы в прошлом приводили к кликам на документы, которые сейчас ранжируются по текущему запросу. Эти исторические запросы кластеризуются по смыслу для выявления разных интентов. Лучший запрос из …
Google разработал систему, позволяющую пользователям удалять нежелательные сайты из своей выдачи. Патент описывает, как эти данные агрегируются от «легитимных пользователей» и используются для расчета «Remove List Score» — глобального сигнала …
Google использует модель машинного обучения (Reinforcement Learning) для прогнозирования, как показ конкретного результата повлияет на будущую активность пользователя. Если контент (даже кликабельный) снижает долгосрочную вовлеченность, система может его не показать, …
Google решает проблему нехватки данных для ранжирования новых или редких пар запрос-документ. Вместо запоминания исторических данных система изучает скрытые признаки (эмбеддинги) отдельно для запросов и документов. Оценка релевантности вычисляется как …
Google анализирует коллекции похожих структурированных документов (например, товарных карточек) и создает общую модель (DOM). Затем система изучает логи запросов и кликов, чтобы понять, какие части структуры (заголовки, основной контент, реклама) …
Google использует модель машинного обучения для прогнозирования вероятности того, что пользователь перейдет по конкретной ссылке. Эта модель анализирует характеристики ссылки (положение, размер шрифта, анкорный текст) и данные о поведении пользователей. …
Google использует архитектуру для генерации множества вариантов пересмотренных запросов (Related Searches). Патент описывает, как система оценивает качество этих вариантов с помощью предиктивных моделей, обученных на поведении пользователей (например, "длинные клики"), …
Google анализирует исторические данные о том, как пользователи переформулируют запросы (цепочки запросов), пока не найдут нужный контент. Если многие пользователи начинают с запроса А, переходят к запросу Б и кликают …
Google использует механизм обобщения запросов для улучшения ранжирования, особенно когда исторических данных по исходному запросу недостаточно. Система создает варианты запроса (удаляя стоп-слова, используя синонимы, стемминг или частичное совпадение) и агрегирует …