Google использует механизм для улучшения поисковых подсказок (Autocomplete). Система определяет запросы, которые имеют идентичную каноническую форму (тот же базовый интент после нормализации), но структурно отличаются от вводимого текста. Среди этих …
Семантика и интент
Google использует механизм уточнения интента пользователя в реальном времени при обработке неоднозначных запросов. Система группирует результаты поиска по связанным сущностям. Если пользователь демонстрирует отсутствие интереса к одной из групп (например, …
Google использует поведенческие данные для определения семантической связи между запросами и изображениями. Если пользователи часто кликают на одни и те же изображения в ответ на два разных запроса (даже на …
Патент Google описывает, как система определяет лучший способ отображения результатов поиска (карта, таймлайн, галерея) на основе свойств сущностей в Knowledge Graph. Также раскрывается механизм ранжирования результатов по «модифицирующим концепциям» — …
Google использует метод Latent Collaborative Retrieval (LCR) для персонализации поиска. Система создает векторные представления (эмбеддинги) для текущего запроса пользователя и его долгосрочного профиля (история, предпочтения). Эти векторы приводятся к единой …
Google использует анализ «избыточных запросов» (тем, которые ищут в регионе значительно чаще, чем в среднем по стране) для определения поведенческой схожести географических локаций, независимо от расстояния. Это позволяет Google переносить …
Google использует систему для автоматического извлечения пар Вопрос-Ответ из веб-документов, форумов и логов чатов. Система создает два репозитория: один для точных совпадений вопросов, другой для ключевых слов. Это позволяет предоставлять …
Google использует технологию предиктивного (проактивного) поиска, которая анализирует текущий контекст пользователя (местоположение, время, календарь, скорость движения, привычки) для автоматического предоставления релевантной информации. Система реагирует на «запрос без параметров» (например, открытие …
Google использует статистическую модель, обученную на исторических данных (например, CTR/CVR), для переоценки релевантности параметров контента (ключевых слов, тем). Система не оценивает параметры изолированно, а анализирует их взаимодействие и совместную встречаемость …
Google использует анализ уточнений запросов (refinements) для определения тематической категории и интента. Система анализирует дополнительные слова (мета-термины), которые пользователи добавляют к исходному запросу. Если разные запросы уточняются схожим образом, система …
Google анализирует, на какие категории результатов пользователи кликали чаще всего в прошлом (CTR) по неоднозначному запросу (например, "Pool"). Система определяет доминирующие интенты, выявляя резкие перепады в CTR между категориями или …
Google анализирует внешние веб-страницы, которые ссылаются на медиафайлы или встраивают их (например, видео YouTube). Система извлекает метаданные из контекста этих страниц — заголовков, окружающего текста, URL. Надежность данных проверяется частотой …
Google классифицирует синонимы по степени надежности. Если синоним считается ненадежным или зависящим от контекста (Restricted-Locality Synonym), он вносит вклад в ранжирование, только если находится в документе в непосредственной близости к …
Google анализирует, какие изображения пользователи выбирают совместно в ответ на один и тот же запрос (co-click data) и что они ищут сразу после просмотра изображения (subsequent queries). На основе этих …
Google использует методы коллаборативной фильтрации для персонализации выдачи в вертикальных поисках (Hotels, Flights, Shopping). Система анализирует историю взаимодействий всех пользователей, чтобы создать векторные представления (эмбеддинги) для элементов (отелей, товаров). Затем …
Google анализирует, является ли общий запрос (без указания места) статистически более популярным в конкретном регионе или часто вводится через интерфейс Карт. Если да, система определяет запрос как «локально значимый», автоматически …
Google определяет, какой формат контента (изображения, видео, текст, аудио) ожидает пользователь, вычисляя «Значение индекса интента» (Intent Index Value). Для этого используются AI-модели или анализ исторических данных (кластеры запросов). Это значение …
Google анализирует, какие результаты поиска выбирают пользователи, чтобы понять, являются ли последовательные слова в запросе единой фразой (например, "Нью Йорк") или отдельными терминами. Если пользователи преимущественно кликают на результаты, содержащие …
Google улучшает ранжирование в специализированных поисковых вертикалях (например, Музыка, Книги, Товары), где данных для оценки контента недостаточно (Sparse Corpora). Система использует сигналы из основного Веб-поиска (популярность запросов, CTR веб-страниц), чтобы …
Google улучшает понимание сущностей (Instances) путем анализа того, как пользователи их ищут. Патент описывает метод ранжирования категорий (Classes) для сущности, основанный на частоте их совместного упоминания в логах поисковых запросов. …