Google анализирует два типа данных для определения альтернативных товаров: историю кликов в продуктовом поиске (какие запросы ведут к каким товарам) и логи веб-поиска (как часто пользователи вводят сравнительные запросы, например, …
Семантика и интент
Google использует комбинацию методов для определения того, ищет ли пользователь информацию о медиаконтенте (ТВ-шоу, фильмы). Система анализирует запросы на наличие медиа-терминов, временных указателей, префиксов и использует машинное обучение (включая анализ …
Google отслеживает сущности (люди, места, медиа), упомянутые в недавних запросах пользователя в рамках одной сессии. При вводе нового запроса система предлагает подсказки, комбинируя стандартные шаблоны запросов (например, "погода в $городе") …
Google использует систему для объяснения, почему две сущности (например, компании) похожи. Вместо очевидных связей (например, «оба являются ресторанами»), система анализирует все общие черты, отфильтровывает слишком частые и слишком редкие, и …
Google анализирует агрегированную историю поисковых сессий, чтобы предсказать, какой запрос пользователь введет следующим. Система может выполнить этот предполагаемый запрос (Inferred Action) заранее и встроить его результаты непосредственно в текущую страницу …
Google анализирует историю пользователя, время, местоположение и другие сигналы для прогнозирования тем, интересующих пользователя в данный момент. Когда пользователь демонстрирует намерение начать поиск (например, открывает страницу поиска), система может проактивно …
Google использует систему для идентификации таблиц с упорядоченными данными (рейтингами) на веб-страницах. Система анализирует структуру таблицы и контекст страницы (заголовки, окружающий текст, прошлые запросы), чтобы понять, что именно и по …
Google патентует метод улучшения поиска за счет расширения сущностей в запросах и контенте с помощью Knowledge Graph. Система использует курируемые связи (предикаты) для выявления неявной релевантности. Также вводится «дескриптор релевантности» …
Google автоматически генерирует обучающие данные для систем семантического парсинга, анализируя логи запросов и клики пользователей. Система находит запросы с одинаковым интентом, определяя, что пользователи, вводящие разные запросы, в итоге кликают …
Google использует итеративный процесс (бутстрэппинг) для распознавания сущностей в документах. Система начинает с известных фактов о сущности, находит документы, которые, вероятно, ссылаются на нее, анализирует эти документы для уточнения модели …
Google анализирует поведение пользователей (click log data), чтобы определить, как они называют конкретный сайт на своем языке. Если пользователи, вводящие определенный запрос (например, название бренда), доминантно кликают на один и …
Google динамически корректирует ранжирование, определяя потребность запроса в свежести (QDF). Это делается на основе анализа поведения пользователей (QtoA) и всплесков интереса (QFval). Система вычисляет возраст и качество документа (D) и …
Google использует систему машинного обучения для связывания аудиовизуальных признаков видео (цвет, текстура, звук) с ключевыми словами. Это позволяет системе понимать содержание каждого кадра и динамически выбирать для тамбнейла (миниатюры) тот …
Google использует систему для Автоматизированных Ассистентов, которая ищет ответы не только в общем веб-индексе. Система анализирует текущий контекст пользователя (местоположение, тему диалога) и «активные документы» (открытые веб-страницы, недавно озвученный контент). …
Google использует модели машинного обучения для оценки релевантности пользовательского контента (например, постов в социальных сетях). Система учитывает не только текст поста, но и контекст его автора (биографию, экспертизу, местоположение). Это …
Google использует механизм для повышения точности коротких ответов (Featured Snippets). Вместо того чтобы полагаться только на один источник, система анализирует несколько топовых результатов поиска. Если информация в основном кандидате подтверждается …
Google использует машинное обучение для анализа изображений и отзывов о местах (например, ресторанах) и связывания их с конкретными атрибутами (например, "есть детское меню", "вид на горы"). При поиске система динамически …
Google использует системы для двустороннего связывания запросов и сущностей. Алгоритмы анализируют релевантность документов запросу и значимость сущности внутри этих документов, чтобы определить главную (Primary) и второстепенные (Secondary) сущности для запроса. …
Google использует систему для определения того, какие сущности (люди, места, объекты) подразумеваются в поисковом запросе. Система анализирует, насколько релевантны топовые документы запросу и насколько центральное место в этих документах занимает …
Фундаментальный патент Google, лежащий в основе AdSense. Он описывает, как Google анализирует контент документа (веб-страницы или видео) для определения его тем. Система использует классические методы Information Retrieval: частоту терминов (концепция …