Персонализация

Google использует исторические данные о поведении пользователя для определения его интересов. Когда запрос вызывает Панель знаний для сущности, система переоценивает потенциальные факты и сниппеты для включения в панель. Приоритет отдается …
Google патентует систему для рекомендации целых категорий контента (например, "Рецепты барбекю"), а не только отдельных страниц. Система создает "Эмбеддинги Категорий", агрегируя эмбеддинги топовых результатов поиска по названию этой категории. Затем …
Google использует машинное обучение для анализа местоположения, скорости движения и истории пользователя, чтобы предсказать, когда он откроет приложение Карт и что будет искать. Это позволяет системе заранее подготовить релевантные ссылки …
Google анализирует недавнюю активность пользователя (запросы и клики в рамках сессии), чтобы определить его краткосрочный тематический интерес. Система сравнивает, как другие пользователи с таким же интересом взаимодействовали с результатами по …
Патент описывает, как Google использует контекст пользователя (местоположение, время, интересы), чтобы предсказать его информационные потребности и предложить «Контекстные кластеры» запросов еще до ввода текста. Система анализирует исторические данные, группирует схожие …
Патент Google описывает систему генерации Панелей Знаний (Knowledge Panels). Система идентифицирует сущность в запросе, определяет ее тип и использует соответствующий шаблон. Этот шаблон наполняется контентом, агрегированным из множества разных источников. …
Google патентует систему построения "графа интересов" пользователя на основе его личных данных: истории поиска, посещенных сайтов, email, социальных связей и истории местоположений. Этот граф используется для автоматического предсказания интересов и …
Google использует механизм для обучения диалоговых систем (голосовых ассистентов). Система анализирует последующие реплики и действия пользователя (например, повторение вопроса или уточняющий запрос) как обратную связь на предоставленный ответ. Эта связь …
Google использует систему для определения степени связанности между сущностями путем анализа поведения пользователей (co-interaction data) в разных типах медиа (видео, веб-страницы, покупки). Этот механизм агрегирует поведенческие данные для расчета «оценки …
Google использует механизм для разрешения неоднозначности запросов. Если выдача содержит результаты о разных сущностях (например, «Ягуар» как животное и как автомобиль), клик пользователя по одному результату сигнализирует о его интенте. …
Google использует механизм «Boost Vectors» для персонализации поиска. Система классифицирует интересы пользователя или тематику сайта-источника, и на основе этих категорий повышает в выдаче результаты, предварительно ассоциированные с этими темами. Это …
Google анализирует последовательность запросов пользователя в рамках одной поисковой сессии, чтобы определить ее контекст. Сравнивая эту последовательность с историческими паттернами поиска (Query Paths), система выявляет, к какому результату пользователь, вероятно, …
Google отслеживает, посещают ли пользователи географические места после того, как система им их порекомендовала, используя геолокационные данные. Если пользователи определенной группы часто посещают место после рекомендации, Google повышает ранжирование этого …
Анализ основополагающего патента Google, описывающего создание детальных профилей пользователей (Term-based, Category-based, Link-based) на основе их интересов, истории поиска, поведения на сайте и демографии. Эти профили используются для переранжирования органических результатов …
Google использует систему для идентификации людей (членов социальной сети), тесно связанных с темой запроса, на основе их активности (посты, взаимодействия, репосты) и квалификации. Система отображает этих людей в специальных блоках …
Анализ патента Google (связанного с Google Knol), который детализирует расчет метрик авторитетности автора: Reputation Score (репутация) и Credibility Factor (достоверность). Патент описывает использование этих метрик для ранжирования и монетизации, а …
Google использует данные датчиков (GPS, акселерометр) для определения текущей физической активности пользователя (ходьба, езда на велосипеде, в машине или автобусе). Эта информация используется в реальном времени для изменения поисковой выдачи: …
Google использует систему для прогнозирования истинного намерения пользователя на основе его текущего контекста (местоположение, время, среда, недавние действия) и исторических данных о поведении других пользователей в аналогичных ситуациях. Система переранжирует …
Google не присваивает фиксированный вес синонимам (замещающим терминам) при ранжировании. Вес синонима динамически корректируется для каждого документа в зависимости от того, насколько релевантен исходный термин запроса этому документу. Эта релевантность …
Патент описывает механизм интеграции экспертов (Authoritative Users) в поисковую выдачу. Когда запрос совпадает с триггерным запросом, система извлекает пул экспертов и их оценки авторитетности. Этот пул фильтруется с использованием оценок, …