Google использует систему машинного обучения для анализа того, какие товары пользователи выбирают после ввода широких или неоднозначных запросов. Изучая скрытые атрибуты (метаданные) этих выбранных товаров, система определяет «скрытое намерение» запроса. …
Патенты Google
Разборы патентов поисковой системы Google
Google оценивает качество страниц и доменов, анализируя, как они конкурируют в поисковой выдаче. Система отслеживает «Победы» (Wins) и «Поражения» (Losses) на основе поведения пользователей: сравнивая время пребывания (Dwell Time) при …
Google использует механизм «Boost Vectors» для персонализации поиска. Система классифицирует интересы пользователя или тематику сайта-источника, и на основе этих категорий повышает в выдаче результаты, предварительно ассоциированные с этими темами. Это …
Google анализирует последовательность запросов пользователя в рамках одной поисковой сессии, чтобы определить ее контекст. Сравнивая эту последовательность с историческими паттернами поиска (Query Paths), система выявляет, к какому результату пользователь, вероятно, …
Google использует эффективный математический метод для распространения характеристик (например, тематик сайтов) по большим графам. Патент описывает, как Google может строить графы сайтов, где связи основаны на поведении пользователей (совместное посещение …
Google использует архитектуру для генерации множества вариантов пересмотренных запросов (Related Searches). Патент описывает, как система оценивает качество этих вариантов с помощью предиктивных моделей, обученных на поведении пользователей (например, "длинные клики"), …
Google использует архитектуру глубокого обучения (Deep Network) для классификации веб-ресурсов. Система преобразует разнородные признаки страницы (текст, URL, возраст) в числовые векторы (эмбеддинги), обрабатывает их через нейронную сеть для глубокого анализа …
Google отслеживает, посещают ли пользователи географические места после того, как система им их порекомендовала, используя геолокационные данные. Если пользователи определенной группы часто посещают место после рекомендации, Google повышает ранжирование этого …
Google анализирует агрегированные данные о взаимодействии пользователей с видео (перемотки, паузы, комментарии, повторные просмотры). На основе этих данных система вычисляет оценки вовлеченности для каждого сегмента. Это позволяет автоматически определять самые …
Анализ основополагающего патента Google, описывающего создание детальных профилей пользователей (Term-based, Category-based, Link-based) на основе их интересов, истории поиска, поведения на сайте и демографии. Эти профили используются для переранжирования органических результатов …
Google анализирует исторические данные о том, как пользователи переформулируют запросы (цепочки запросов), пока не найдут нужный контент. Если многие пользователи начинают с запроса А, переходят к запросу Б и кликают …
Google использует механизм для гарантированного включения результатов с авторитетных сайтов в поисковую выдачу. Если исходный запрос содержит ключевое слово, связанное с авторитетным источником, или если качество стандартной выдачи низкое, система …
Google применяет механизмы для предотвращения «залипания» устаревших результатов в топе выдачи. Система анализирует возраст пользовательских кликов и снижает вес старых данных (временной распад), отдавая приоритет свежим сигналам. Кроме того, система …
Google использует систему для идентификации людей (членов социальной сети), тесно связанных с темой запроса, на основе их активности (посты, взаимодействия, репосты) и квалификации. Система отображает этих людей в специальных блоках …
Механизм защиты пользователей, который перехватывает запрос на загрузку веб-страницы. Если страница идентифицирована как низкокачественная (паркинг домена, ферма контента или ссылочная ферма), система показывает предупреждение и предлагает перейти на альтернативный релевантный …
Google использует механизм для автоматического определения географической релевантности веб-ресурсов путем анализа местоположения их посетителей (через IP-адреса). Система применяет кластерный анализ к этим данным: если аудитория сконцентрирована в определенных регионах, сайт …
Анализ патента Google (связанного с Google Knol), который детализирует расчет метрик авторитетности автора: Reputation Score (репутация) и Credibility Factor (достоверность). Патент описывает использование этих метрик для ранжирования и монетизации, а …
Google использует данные датчиков (GPS, акселерометр) для определения текущей физической активности пользователя (ходьба, езда на велосипеде, в машине или автобусе). Эта информация используется в реальном времени для изменения поисковой выдачи: …
Google использует систему для прогнозирования истинного намерения пользователя на основе его текущего контекста (местоположение, время, среда, недавние действия) и исторических данных о поведении других пользователей в аналогичных ситуациях. Система переранжирует …
Google рассчитывает оценки авторитетности для контент-каналов (например, YouTube-каналов), специфичные для разных типов запросов (таких как свежесть или качество). Эти оценки на уровне канала затем присваиваются отдельным видео и используются для …