Google использует механизм для борьбы с кликбейтными или нерелевантными изображениями в поиске. Система анализирует, как часто пользователи кликают на изображение по множеству несвязанных запросов. Если изображение часто выбирают независимо от …
Мультимедиа
Google использует систему ранжирования для видеоплатформ, которая идентифицирует "ведущее видео" (Lead Video), инициирующее сессию просмотра. Система применяет повышающие коэффициенты (Scaling Factors) ко времени просмотра этого видео. Видео, привлекшие пользователя на …
Google использует поведенческие данные для определения семантической связи между запросами и изображениями. Если пользователи часто кликают на одни и те же изображения в ответ на два разных запроса (даже на …
Google анализирует пользовательский контент (фотографии, посты, метаданные) и историю поиска, чтобы определить, с какими объектами (места, продукты, услуги) взаимодействовал пользователь. Система проактивно предлагает оставить структурированный отзыв, используя шаблон, который может …
Google анализирует внешние веб-страницы, которые ссылаются на медиафайлы или встраивают их (например, видео YouTube). Система извлекает метаданные из контекста этих страниц — заголовков, окружающего текста, URL. Надежность данных проверяется частотой …
Анализ патента Google, описывающего систему ранжирования видеоконтента. Система вычисляет оценку релевантности, используя не только стандартные метаданные (название, описание), но и специфические "видео-ориентированные характеристики". К ним относятся данные о трансляциях (источник, …
Google анализирует, какие изображения пользователи выбирают совместно в ответ на один и тот же запрос (co-click data) и что они ищут сразу после просмотра изображения (subsequent queries). На основе этих …
Google применяет систему для валидации брендовых ассетов (изображений и названий организаций) перед их отображением в результатах поиска. Система использует ML-модели для двух проверок: является ли изображение приемлемым (не нарушает правила, …
Google определяет, какой формат контента (изображения, видео, текст, аудио) ожидает пользователь, вычисляя «Значение индекса интента» (Intent Index Value). Для этого используются AI-модели или анализ исторических данных (кластеры запросов). Это значение …
Патент Google описывает систему автоматической классификации видео, которая не требует ручной разметки и устойчива к неточным метаданным. Система сначала обучает классификаторы на основе аудиовизуального контента. Затем эти результаты используются для …
Google использует механизм для определения интента пользователя по редким или новым (long-tail) запросам, когда исторические данные отсутствуют. Система эффективно "прощупывает" вертикальные индексы (например, картинки), чтобы решить, стоит ли проводить полный …
Google использует механизм для улучшения точности ответов, генерируемых LLM в ответ на мультимодальные запросы (изображение + текст). Система находит визуально похожие изображения, извлекает текст из их источников и генерирует ответ. …
Google использует системы на основе ИИ (Трансформеры) для анализа видеоконтента, объединяя визуальные, звуковые и текстовые сигналы в единые мультимодальные эмбеддинги. Этот механизм позволяет поисковой системе глубоко понимать содержание видео, оценивать …
Google измеряет, сколько времени пользователи тратят на потребление контента (особенно видео) после клика по результату поиска и во время последующей сессии. Ресурсы, которые удерживают внимание пользователей дольше, получают повышение в …
Google использует механизм для улучшения результатов видеопоиска и рекомендаций путем анализа того, как долго различные группы пользователей (сегментированные по демографии или поведению) смотрят определенные видео. Система повышает в ранжировании те …
Google применяет архитектуру нейронных сетей («Two-Tower Model») для поиска изображений. Система создает семантические векторы (эмбеддинги) отдельно для запроса и для пары «изображение + посадочная страница» в общем пространстве. Это позволяет …
Google использует NLP и машинное обучение для анализа тональности (sentiment) пользовательских комментариев к медиаконтенту (например, видео на YouTube). Система определяет, считают ли пользователи контент смешным, информативным, спорным и т.д., и …
Google анализирует, какие изображения пользователи нажимают вместе (co-select) в ответ на конкретный запрос. Изучая визуальные характеристики этих совместно выбранных изображений, Google создает «Профиль изображения, зависящий от запроса» (Query-Dependent Image Profile). …
Google использует механизм для обработки поисковых запросов, представленных в виде изображений или нарисованных эскизов. Система сравнивает визуальный ввод с эталонными изображениями. Затем она определяет ключевые слова, связанные с наиболее похожим …
Google использует систему для корректировки ранжирования изображений непосредственно в момент запроса (онлайн). Для популярных запросов система заранее обучает индивидуальные модели релевантности на основе исторических данных о кликах. При получении нового …