Google анализирует взаимоотношения между администраторами веб-сайтов (используя данные социальных сетей), чтобы определить независимость ссылок или кликов по рекламе. Если обнаружена тесная связь, это интерпретируется как предвзятость (Bias). В результате вес …
2016
Патент описывает, как поисковая система магазина приложений (например, Google Play) улучшает свои результаты, используя данные из интернета. Система модифицирует исходный запрос пользователя, отправляет его в веб-поиск, анализирует найденные веб-страницы на …
Google использует статистическую модель для оценки качества контента (например, целевых страниц рекламы) на основе поведения пользователей после клика. Система анализирует такие факторы, как время пребывания на странице и последующие действия …
Патент Google описывает два ключевых механизма. Первый — автоматическое расширение набора запросов (триггеров), активирующих структурированные карточки, с помощью графового анализа и передачи весов между запросами и сущностями. Второй — процесс …
Google использует механизм для автоматического создания страниц о сущностях (например, о фильмах или персонажах). Система определяет, какие категории (свойства) сущности наиболее интересны пользователям, сравнивая данные из Knowledge Graph с данными …
Google использует систему машинного обучения для анализа того, как долго пользователи взаимодействуют с контентом в приложении после перехода по Deep Link (Presentation Duration). Анализируя распределение этих временных интервалов, система классифицирует …
Патент описывает механизм генерации рекомендаций контента на основе того, что пользователь просматривает в данный момент, без ввода поискового запроса. Система анализирует текущий контент, находит связанные ресурсы и ранжирует их, основываясь …
Google использует модель машинного обучения (Reinforcement Learning) для прогнозирования, как показ конкретного результата повлияет на будущую активность пользователя. Если контент (даже кликабельный) снижает долгосрочную вовлеченность, система может его не показать, …
Google использует систему ранжирования для видеоплатформ, которая идентифицирует "ведущее видео" (Lead Video), инициирующее сессию просмотра. Система применяет повышающие коэффициенты (Scaling Factors) ко времени просмотра этого видео. Видео, привлекшие пользователя на …
Google использует механизм для улучшения результатов видеопоиска и рекомендаций путем анализа того, как долго различные группы пользователей (сегментированные по демографии или поведению) смотрят определенные видео. Система повышает в ранжировании те …
Google использует модели машинного обучения (например, архитектуру Encoder-Decoder) для анализа контента ресурса и прогнозирования значений критически важных сигналов ранжирования, которые отсутствуют (например, каким был бы анкорный текст ссылок или по …
Google использует систему для автоматической генерации движущихся миниатюр (анимированных превью). Система анализирует видео покадрово, оценивая визуальное качество, наличие лиц и движение. Затем она использует метод «скользящего окна» для оценки целых …
Google использует "восходящий" подход для наполнения лент контента (например, Google Discover). Система заранее генерирует множество запросов по теме и оценивает качество их результатов по метрикам свежести (Velocity), вовлеченности (Feedback), точности …
Google оптимизирует визуальный поиск (например, Google Lens), анализируя, куда пользователь нажимает на изображении. Система направляет основные вычислительные ресурсы (мощные нейросети, детальный OCR) на выбранную область, а остальную часть изображения обрабатывает …
Google оценивает удовлетворенность пользователя, кодируя последовательность его онлайн-действий (поиски, клики, свайпы) в символьные строки. Анализируя эти паттерны, система классифицирует сессии как положительные или отрицательные, не полагаясь на ненадежные метрики вроде …
Google использует систему для анализа конкуренции между видео на основе общих поисковых запросов и времени просмотра. Система выявляет поисковые запросы, которые приводят трафик на конкурирующие (например, производные) видео, и сравнивает …
Патент описывает, как Автоматизированные Ассистенты (например, Google Assistant) управляют показом результатов поиска в ограниченных интерфейсах (аудио, чат). Система позволяет пользователю перемещаться по результатам с помощью естественного языка (например, «назад к …
Анализ патента Google, описывающего, как персональные ассистенты используют машинное обучение для определения «тона» сообщения. Система рассчитывает оценки «светской беседы» (Idle Chatter Score) и «пригодности для поиска» (Search Query Suitability Score). …
Патент описывает систему, которая автоматически изучает шаблоны вопросов (Question Types) и соответствующие им шаблоны ответов (Answer Types). Google использует эти шаблоны, чтобы классифицировать запрос как "ищущий ответ", найти в тексте …
Google использует ML-модели для прогнозирования ожидаемого объема обсуждений (например, твитов) по теме в реальном времени. Система анализирует разницу между фактической и прогнозируемой активностью (остаточный сигнал), чтобы точно и быстро выявлять …