2013

Google анализирует данные сенсоров мобильного устройства за определенный период времени, чтобы определить преобладающий способ передвижения пользователя (например, вождение), игнорируя кратковременные остановки. Эта «преобладающая активность» используется для ранжирования локальных подсказок и …
Google использует систему для объяснения, почему две сущности (например, компании) похожи. Вместо очевидных связей (например, «оба являются ресторанами»), система анализирует все общие черты, отфильтровывает слишком частые и слишком редкие, и …
Google анализирует агрегированную историю поисковых сессий, чтобы предсказать, какой запрос пользователь введет следующим. Система может выполнить этот предполагаемый запрос (Inferred Action) заранее и встроить его результаты непосредственно в текущую страницу …
Google использует механизм для корректировки общих рейтингов сущностей (товаров, услуг, компаний) на основе индивидуальных предпочтений пользователя. Система анализирует текстовые отзывы, чтобы выявить характеристики сущности (например, «цена», «скорость обслуживания») и определить …
Google автоматически генерирует обучающие данные для систем семантического парсинга, анализируя логи запросов и клики пользователей. Система находит запросы с одинаковым интентом, определяя, что пользователи, вводящие разные запросы, в итоге кликают …
Google использует системы для двустороннего связывания запросов и сущностей. Алгоритмы анализируют релевантность документов запросу и значимость сущности внутри этих документов, чтобы определить главную (Primary) и второстепенные (Secondary) сущности для запроса. …
Google использует систему для определения того, какие сущности (люди, места, объекты) подразумеваются в поисковом запросе. Система анализирует, насколько релевантны топовые документы запросу и насколько центральное место в этих документах занимает …
Google использует алгоритмы для анализа информации о контенте (например, книгах, фильмах, сериалах) из множества источников. Система создает записи, кластеризует их для выявления серий, определяет канонические названия серий и отдельных произведений, …
Google анализирует, насколько хорошо веб-страница представляет выбранное изображение («image-centricity»). Если изображение на странице качественное, заметное и удовлетворяет интент пользователя (на основе статических и поведенческих данных), Google направляет трафик из Поиска …
Google использует механизм разрешения неоднозначности в последовательных голосовых запросах. Если пользователь использует местоимение (например, «он», «оно»), которое может относиться к разным сущностям из предыдущего диалога, Google генерирует несколько вариантов запроса …
Google анализирует различные форматы доступа к контенту (например, десктопный сайт, мобильный сайт, нативное приложение). Система оценивает качество, скорость, стабильность и совместимость каждого варианта с устройством пользователя. В результатах поиска Google …
Google анализирует неструктурированный контент (веб-страницы, статьи), чтобы найти людей, которые часто упоминаются вместе (co-occurrence). На основе частоты и контекста этих упоминаний система вычисляет метрику связи (relationship metric) и предлагает пользователям …
Google использует механизм для объединения социальных одобрений (например, лайков, шейров, +1) с разных, но связанных страниц в единый счетчик. Это включает агрегацию сигналов со всех канонических версий URL, а также …
Google использует механизм для слияния топового органического результата и рекламного объявления, если они относятся к одному и тому же бренду (сущности). Это создает единый обогащенный блок (Combined Content Item). Затем …
Патент Google описывает систему для проактивной обработки контента, связанного с будущими событиями. Система определяет потенциальные тренды, анализируя устойчивость интереса пользователей к теме задолго до события. Затем она заранее классифицирует и …
Google использует сигналы взаимодействия пользователей (комментарии, лайки, плейлисты) для определения субъективных характеристик контента, таких как «смешной» или «вдохновляющий». Система обучает классификатор связывать объективные признаки контента (визуальные, аудио, текстовые) с этими …
Google описывает систему для тематических сообществ, где пользователи зарабатывают репутацию (Topical Reputation Score) на основе качества контента, которым они делятся в рамках конкретных тем. Достигнув порогового значения, пользователь «разблокирует» тему, …
Google анализирует реальные маршруты пользователей, чтобы понять, как связаны различные физические локации. Система определяет характеристики бизнеса (например, тип ресторана или его качество) на основе того, откуда приезжают посетители, куда они …
Google расширяет поисковые подсказки (Autocomplete) за пределы исторических логов, анализируя метаданные документов, такие как заголовки (Title). Система извлекает фразы, проверяет их грамматическую корректность с помощью NLP (POS-tagging) и добавляет в …
Google использует специализированную систему для ранжирования физических событий в определенном месте и времени. Система вычисляет оценку популярности события на основе множества сигналов: количества упоминаний в интернете, кликов на официальную страницу, …