SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Свежесть контента в Google: разборы патентов

Детальные разборы патентов Google, связанные со свежестью и актуальностью контента
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google использует исторические данные о документах, ссылках и поведении пользователей для определения свежести, качества и борьбы со спамом
Фундаментальный патент Google, описывающий использование временных рядов данных для ранжирования. Система анализирует историю документа (дату создания, частоту и объем обновлений), историю ссылок (скорость появления, возраст, изменения анкоров), тренды запросов и поведение пользователей. Эти данные используются для определения свежести контента, выявления неестественной активности (спама) и оценки легитимности домена.
  • US7346839B2
  • 2003-12-31
  • Свежесть контента

  • Антиспам

  • Ссылки

Как Google использует LLM для генерации поисковых сводок (SGE), основываясь на контенте веб-сайтов, и итеративно уточняет ответы
Google использует Большие Языковые Модели (LLM) для создания сводок (AI-ответов) в результатах поиска. Для повышения точности и актуальности система подает в LLM не только запрос, но и контент из топовых результатов поиска (SRDs). Патент описывает, как система выбирает источники, генерирует сводку, проверяет факты, добавляет ссылки на источники (linkifying) и аннотации уверенности. Кроме того, система может динамически переписывать сводку, если пользователь взаимодействует с одним из источников.
  • US11769017B1
  • 2023-03-20
  • EEAT и качество

  • Ссылки

  • SERP

Как Google определяет свежесть документа, анализируя возраст ссылающихся страниц и динамику появления ссылок (Link Velocity)
Google использует методы для оценки свежести документа, когда дата его обновления неизвестна или ненадежна. Система анализирует даты обновления страниц, которые ссылаются на документ, а также историю появления и удаления этих ссылок (Link Velocity). Если на документ ссылаются недавно обновленные страницы или количество ссылок растет, он считается свежим.
  • US7797316B2
  • 2004-06-30
  • Свежесть контента

  • Ссылки

  • Техническое SEO

Как Google выбирает, сортирует и форматирует динамические Sitelinks на основе типа контента и свежести страниц
Патент Google описывает систему генерации Sitelinks (саб-ссылок), которые ведут непосредственно на конечный контент (статьи, видео, товары), а не на разделы сайта. Система определяет категорию контента и применяет специфические правила сортировки (например, по свежести для новостей), которые отличаются от стандартного ранжирования. Также используется специальное форматирование для улучшения навигации в SERP.
  • US9081832B2
  • 2013-03-15
  • Ссылки

  • SERP

  • Свежесть контента

Как Google использует CTR и E-E-A-T сигналы для определения контекста ссылок и оценки качества внешних упоминаний
Google использует двухэтапный механизм для анализа внешних комментариев (например, блог-постов). Сначала система определяет истинный объект обсуждения, если в комментарии несколько ссылок, анализируя CTR, длину URL и тематику. Затем она оценивает качество комментария, используя рейтинг автора, авторитетность источника, свежесть и обратную связь пользователей, чтобы отобрать наиболее релевантный контент.
  • US8656266B2
  • 2008-12-18
  • Ссылки

  • EEAT и качество

  • Свежесть контента

Как Google агрегирует, оценивает и ранжирует комментарии, отзывы и упоминания о веб-странице из разных источников
Google собирает комментарии, отзывы и посты в блогах, относящиеся к определенной веб-странице. Система использует сложные алгоритмы для определения основной темы упоминаний (особенно если в них несколько ссылок) и ранжирует эти комментарии на основе авторитетности автора, свежести, качества языка и обратной связи пользователей, чтобы представить наиболее полезные мнения.
  • US8745067B2
  • 2009-08-12
  • EEAT и качество

  • Свежесть контента

  • Семантика и интент

Как Google использует визуальное расположение новостей на главных страницах СМИ для ранжирования в Google News
Google анализирует главные страницы авторитетных новостных сайтов («Hub Pages»), чтобы определить важность новостей. Система оценивает «визуальную заметность» (Prominence) ссылки на статью — ее расположение (выше/ниже), размер шрифта, наличие картинки и сниппета. Чем заметнее ссылка на сайте СМИ, тем выше статья ранжируется в агрегаторах новостей.
  • US8375073B1
  • 2007-11-12
  • EEAT и качество

  • SERP

  • Ссылки

Как Google ранжирует комментарии и UGC, используя объективное качество и субъективную персонализацию
Google использует двухфакторную модель для ранжирования пользовательского контента (комментариев, отзывов). Система вычисляет объективную оценку качества (репутация автора, грамотность, длина, рейтинги) и субъективную оценку персонализации (является ли автор другом или предпочтительным автором, соответствует ли контент интересам и истории поиска пользователя). Итоговый рейтинг объединяет обе оценки для показа наиболее релевантного и качественного UGC.
  • US8321463B2
  • 2009-08-12
  • Персонализация

  • EEAT и качество

  • Поведенческие сигналы

Как Google использует временной распад и анализ трендов кликов для корректировки ранжирования и борьбы со стагнацией выдачи
Google применяет механизмы для предотвращения «залипания» устаревших результатов в топе выдачи. Система анализирует возраст пользовательских кликов и снижает вес старых данных (временной распад), отдавая приоритет свежим сигналам. Кроме того, система выявляет документы с ускоряющимся трендом кликов по сравнению с фоном и повышает их в выдаче, улучшая актуальность результатов.
  • US9092510B1
  • 2007-04-30
  • Свежесть контента

  • Поведенческие сигналы

  • SERP

Как Google генерирует "Свежие связанные запросы" на основе анализа трендов и новостного контента
Google анализирует недавние поисковые логи, чтобы выявить запросы, демонстрирующие резкий рост популярности или отклонение от ожидаемой частоты. Эти "свежие" запросы проходят обязательную валидацию: они должны возвращать достаточное количество новостных результатов и иметь хорошие показатели вовлеченности (CTR). Это позволяет Google динамически обновлять блок "Связанные поиски", отражая актуальные события и тренды.
  • US8412699B1
  • 2009-06-12
  • Свежесть контента

  • Поведенческие сигналы

  • SERP

Как Google использует всплески поискового интереса и анализ новостей для обновления Графа Знаний в реальном времени
Google отслеживает аномальный рост запросов о сущностях (людях, компаниях) как индикатор реального события. Система анализирует свежие документы, опубликованные в этот период, извлекая факты в формате Субъект-Глагол-Объект (SVO). Эти факты используются для оперативного обновления Графа Знаний или добавления блока «Недавно» в поисковую выдачу.
  • US9235653B2
  • 2013-06-26
  • Knowledge Graph

  • Свежесть контента

  • Семантика и интент

Как Google использует социальный граф и активность друзей для персонализации и переранжирования результатов поиска
Google использует данные из социального графа пользователя и активность его контактов (лайки, шеры, комментарии, плейлисты) для изменения ранжирования результатов поиска. Контент, одобренный социальным окружением, повышается в выдаче и сопровождается аннотациями, объясняющими причину повышения и указывающими на свежесть социального действия.
  • US8959083B1
  • 2012-06-13
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует личную историю поиска и профиль интересов для персонализации подсказок Autocomplete
Google персонализирует поисковые подсказки (Autocomplete), используя профиль интересов пользователя, созданный на основе его прошлых запросов и кликов. Система сравнивает тематику потенциальных подсказок с интересами пользователя и повышает в списке те варианты, которые соответствуют его предпочтениям, с учетом актуальности этих интересов.
  • US20140108445A1
  • 2013-04-10
  • Персонализация

  • Поведенческие сигналы

  • Семантика и интент

Как Google ранжирует документы, используя качество источника, свежесть, оригинальность и кластеризацию контента
Google оценивает документы, анализируя авторитетность и экспертизу источника публикации, свежесть контента и его оригинальность. Документы группируются в кластеры по темам (например, новостные сюжеты). Оценка кластера (например, разнообразие и важность источников внутри него) также влияет на ранжирование отдельных документов.
  • US8090717B1
  • 2003-06-30
  • EEAT и качество

  • Свежесть контента

  • Семантика и интент

Как Google классифицирует страницы как «Динамические» или «Статические» на основе анализа внешних сигналов для адаптации ранжирования
Google использует систему для анализа паттернов активности (например, в социальных сетях), связанных с веб-страницей, чтобы классифицировать ее как «Динамическую» или «Статическую». Эта классификация определяет приоритеты ранжирования: для динамических страниц важна свежесть, а для статических — вовлеченность пользователей. Механизм может применяться как для социальных виджетов, так и в основном поиске.
  • US9747263B1
  • 2014-06-27
  • Свежесть контента

  • Поведенческие сигналы

  • SERP

Как Google использует свой индекс для автоматического обновления устаревших ссылок в закладках, истории поиска и на веб-страницах
Система Google поддерживает актуальность различных коллекций URL (закладки пользователей, история поиска, электронные письма), используя основной поисковый индекс как эталон канонических адресов. Если сохраненный URL устарел, система автоматически заменяет его на актуальную версию. Также описан механизм уведомления владельцев сайтов о неработающих исходящих ссылках.
  • US20130144836A1
  • 2011-06-02
  • Ссылки

  • Индексация

  • Техническое SEO

Как Google использует анализ "Свежести Ранжирования" (Rank Freshness) и человеческую оценку для борьбы с манипуляциями в поиске и спамом
Патент Google описывает гибридную систему для выявления и разрыва нежелательных ассоциаций контента (например, манипулятивных результатов поиска или спам-комментариев). Система алгоритмически выявляет подозрительные связи, используя сигналы, такие как "Свежесть Ранжирования" (внезапный рост позиций), и отправляет их на проверку оценщикам (Арбитрам). Если консенсус подтверждает нарушение, ассоциация разрывается.
  • US8176055B1
  • 2007-03-27
  • Свежесть контента

  • Антиспам

  • SERP

Как Google использует машинное обучение для определения значимости обновлений контента на веб-страницах
Google использует модель машинного обучения (например, Support Vector Machine) для анализа изменений между двумя версиями веб-страницы. Система оценивает контентные, структурные (ссылки) и поведенческие (трафик) признаки, чтобы классифицировать обновление как «значимое» или «незначимое». Это позволяет поисковой системе понять, какие обновления требуют внимания (например, для оценки свежести или переиндексации), а какие являются техническим шумом.
  • US8607140B1
  • 2010-12-21
  • Свежесть контента

  • Индексация

  • Поведенческие сигналы

Как Google рассчитывает QDF (Query Deserves Freshness), комбинируя актуальность запроса, возраст документа и качество источника по формуле Q^D
Google использует формулу S' = S * Q^D для корректировки ранжирования. Система определяет, требует ли запрос свежего контента (Q) и насколько свеж и качественен сам документ и его источник (D). Это позволяет экспоненциально повышать новый контент от авторитетных авторов для актуальных тем и понижать устаревший контент.
  • US9189526B1
  • 2013-03-15
  • Свежесть контента

  • EEAT и качество

  • SERP

Как Google оценивает качество новостных источников, кластеризует статьи и ранжирует новости на основе свежести, оригинальности и авторитетности
Детальный разбор основополагающего патента Google News. Система оценивает источники по скорости реакции на события, оригинальности контента и авторитетности (ссылки, просмотры). Новостные сюжеты (кластеры) ранжируются по свежести и качеству источников. Статьи внутри сюжета сортируются с использованием «Модифицированной оценки свежести», которая дает значительное преимущество авторитетным изданиям.
  • US7568148B1
  • 2003-06-30
  • Свежесть контента

  • EEAT и качество

Как Google использует Матрицу Переходов (Markov Chains) для связи запросов, документов, времени и сессий, чтобы улучшить релевантность, прогнозировать QDF и бороться со спамом
Google моделирует поведение пользователей как Марковскую цепь, создавая Матрицу Переходов между поисковыми сущностями (запросы, документы, время, сессии, домены). Эта матрица определяет силу связей на основе истории поиска и используется для прогнозирования трендов (QDF), распространения сигналов релевантности между связанными документами и идентификации спама путем анализа поведенческих паттернов.
  • US8515975B1
  • 2009-12-07
  • Поведенческие сигналы

  • Антиспам

  • Свежесть контента

Как Google агрегирует новости, блоги и форумы в «Кластеры историй» и ранжирует комментарии на основе аккредитации и экспертности авторов
Патент Google, описывающий систему агрегации новостного контента из разных жанров (СМИ, блоги, форумы) в единые «Кластеры историй». Система ранжирует эти кластеры, учитывая жанр источника, и применяет сложный алгоритм для ранжирования комментариев, отдавая приоритет «аккредитованным» экспертам и лицам, непосредственно упомянутым в новостях.
  • US9760629B1
  • 2012-09-14 (Продолжение заявки от 2004-12-29)
  • EEAT и качество

  • Свежесть контента

  • Семантика и интент

Как Google использует всплески поисковых запросов для идентификации трендовых «моментов» в ТВ-трансляциях и прямых эфирах
Google анализирует всплески поисковых запросов в реальном времени и сопоставляет их с транслируемым медиаконтентом (например, телешоу или спортивными событиями). Сопоставляя термины запроса с метаданными (субтитрами) или анализируя аудио-отпечатки с устройств пользователей, Google определяет точный «момент», вызвавший интерес, и упаковывает его в автоматический «Гид по моментам».
  • US20170214954A1
  • 2016-01-25
  • Поведенческие сигналы

  • Мультимедиа

  • Семантика и интент

Как Google определяет тематическую авторитетность источников ("каналов") и агрессивно продвигает их свежий контент
Google идентифицирует "каналы" (сайты, блоги, разделы), которые исторически создают высококачественный контент по определенным темам. Система рассчитывает тематическую авторитетность, учитывая качество контента и сфокусированность канала. Когда авторитетный канал публикует новый контент по своей теме, Google может агрессивно повысить его в выдаче, даже если у контента еще нет ссылок или поведенческих сигналов.
  • US8874558B1
  • 2012-09-11
  • EEAT и качество

  • Свежесть контента

  • Индексация

Как Google использует историю запросов, сделанных на Картах, для ранжирования локальных результатов и рекламы
Google анализирует, что пользователи ищут, когда просматривают определенную географическую область на карте (Viewport). Эта агрегированная история запросов используется для определения популярности локальных бизнесов и контента в этом конкретном районе. Результаты, которые часто запрашивались в этой области, особенно недавно, получают значительное повышение в ранжировании.
  • US9129029B1
  • 2011-05-19
  • Local SEO

  • Поведенческие сигналы

  • Свежесть контента

Как Google использует всплески локальных запросов для быстрого обнаружения и индексации новых бизнесов
Google анализирует логи локальных поисковых запросов для обнаружения новых бизнесов. Система отслеживает термины, отсутствующие в текущей базе данных. Если частота использования такого термина в определенном регионе резко возрастает по сравнению с историческим уровнем, система идентифицирует его как название нового бизнеса и инициирует процесс его проверки (включая анализ отзывов) и добавления в индекс.
  • US9218420B1
  • 2013-02-26
  • Local SEO

  • Индексация

  • Поведенческие сигналы

Как Google использует репутацию контент-канала (например, YouTube) для ранжирования отдельных видео в зависимости от типа запроса
Google оценивает контент-каналы (например, YouTube), вычисляя специализированные «Оценки канала» (Channel Scores) для разных типов запросов (например, за свежесть или качество). Эти оценки рассчитываются на основе выбранного подмножества метрик канала и его контента, затем присваиваются отдельным видео и используются для корректировки их рейтинга в поиске.
  • US8949874B1
  • 2013-06-25
  • EEAT и качество

  • Свежесть контента

  • SERP

Как Google использует погоду, время, текущие события и социальные сигналы для персонализации поисковых подсказок (Autocomplete)
Google динамически изменяет поисковые подсказки (Autocomplete и переписанные запросы), основываясь на текущем контексте пользователя. Система учитывает такие факторы, как погода, время суток, актуальные новости, рекомендации друзей в социальных сетях и их местоположение. Стандартные подсказки переоцениваются и переранжируются в реальном времени, чтобы предложить пользователю наиболее релевантный запрос в данный момент и в данном месте.
  • US20160041991A1
  • 2013-05-20
  • Персонализация

  • Свежесть контента

  • SERP

Как Google выявляет всплески поискового интереса и определяет тренды в реальном времени
Google использует систему для определения "Исключительных запросов" — тем, интерес к которым резко и неожиданно возрастает в короткий промежуток времени (менее 30 минут). Система сравнивает текущую частоту запроса с прогнозируемой моделью, основанной на исторических данных. Если фактическая активность значительно превышает прогноз, запрос помечается как трендовый. Это позволяет выявлять актуальные события, а не просто самые популярные запросы.
  • US8140562B1
  • 2009-03-24
  • Свежесть контента

  • Поведенческие сигналы

Как Google определяет оригинальность контента для расчета Авторского Ранга (Author Rank) и влияния на ранжирование
Google использует систему для идентификации оригинального контента и повышения авторитета его создателей. Система разбивает документы на фрагменты (content pieces) и отслеживает их первое появление. Авторы (включая домены) ранжируются на основе количества созданного ими оригинального контента и частоты его копирования другими. Ранг автора затем используется для повышения в выдаче документов этого автора, особенно свежих публикаций.
  • US8983970B1
  • 2012-04-16
  • EEAT и качество

  • Свежесть контента

  • SERP

  • 1
  • 2
  • 3
  • 4
seohardcore