SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Поведенческие сигналы в Google: разборы патентов

Детальные разборы патентов Google, связанные с поведением пользователей
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google использует анализ сессий и CTR для переписывания низкоэффективных запросов в высокоэффективные
Google анализирует поведение пользователей внутри поисковых сессий. Если пользователь быстро переходит от запроса с низким CTR (низкоэффективный) к запросу с высоким CTR (высокоэффективный), система связывает их как относящиеся к одному интенту. В дальнейшем, при получении низкоэффективного запроса, Google использует связанный высокоэффективный запрос для поиска и подмешивания более релевантного контента.
  • US8234265B1
  • 2009-11-18
  • Семантика и интент

  • Поведенческие сигналы

  • SERP

Как Google использует клики пользователей для генерации альтернативных запросов и автоматической разметки изображений
Google анализирует исторические данные о том, какие запросы приводили к кликам по конкретному изображению. Эти запросы используются как автоматические метки (labels) для индексации и как предлагаемые альтернативные запросы при взаимодействии пользователя с этим изображением в выдаче. Система позволяет уточнять поиск на основе коллективного поведения и переносить метки между визуально похожими изображениями.
  • US20150161175A1
  • 2008-02-08
  • Индексация

  • Поведенческие сигналы

  • Семантика и интент

Как Google использует поведенческие данные (Dwell Time) для оценки качества страниц и генерации превью в поиске
Google патентует систему "вспомогательного браузинга", которая активируется на странице результатов поиска (SERP) при проявлении интереса к ссылке. Система показывает текстовый сниппет и оценку интереса предыдущих пользователей, рассчитанную на основе имплицитных поведенческих сигналов, таких как время пребывания на странице (Linger Time/Dwell Time), повторные визиты и клики.
  • US7516118B1
  • 2003-12-31
  • Поведенческие сигналы

  • SERP

Как Google использует социальные связи и действия пользователей для персонализации и аннотирования поисковой выдачи
Google использует механизм для персонализации поисковой выдачи путем добавления аннотаций к результатам, которые связаны с социальными группами пользователя (друзья, коллеги, жители города). Система определяет, как участники этих групп взаимодействовали с контентом (создали, поделились, одобрили), приоритизирует эти действия и добавляет пояснения к сниппетам. Также описаны механизмы агрегации действий и защиты конфиденциальности при показе аннотаций.
  • US10142441B2
  • 2011-01-28
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует историю поиска и браузинга для персонализации выдачи и создания неявного "Избранного"
Google записывает историю поиска и просмотров пользователя для персонализации результатов. Система определяет "предпочтительные сайты" на основе частоты посещений, кликов и времени на сайте, повышая их в выдаче для этого пользователя. Патент также описывает объединение предпочтений пользователя с предпочтениями других людей для формирования комбинированного рейтинга.
  • US20060224608A1
  • 2005-03-31
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует поведенческие сигналы и совместные просмотры для генерации рекомендаций контента (например, "Похожие видео" на YouTube)
Google использует механизм коллаборативной фильтрации для определения связанности контента, анализируя логи взаимодействия пользователей. Система определяет, какой контент пользователи потребляют совместно в рамках одной сессии ("locality of time"). Учитываются только "позитивные взаимодействия" (например, длительный просмотр, высокая оценка). Это позволяет формировать рекомендации на основе реального поведения аудитории, а не только метаданных.
  • US8055655B1
  • 2008-02-15
  • Поведенческие сигналы

  • Персонализация

Как Google использует историю браузера пользователя для персонализации и переранжирования результатов поиска
Google использует локально сохраненную историю посещений пользователя для изменения стандартной поисковой выдачи. Система отслеживает, какие документы пользователь посещал ранее, как часто и как долго. При последующих поисках ранее посещенные сайты агрессивно повышаются в выдаче или добавляются в нее, обеспечивая персонализированный результат, основанный на предыдущем поведении пользователя.
  • US7730054B1
  • 2003-09-30
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует сезонные и локальные события (Recurrent Queries) для определения местоположения пользователя
Google улучшает геолокацию пользователей, анализируя «повторяющиеся запросы» (Recurrent Queries) — запросы, популярность которых резко возрастает в конкретных регионах в определенное время (например, локальные праздники или события). Когда пользователь вводит такой запрос в соответствующий период, система с высокой уверенностью определяет его местоположение, даже если другие сигналы (IP, GPS) неоднозначны.
  • US20150169596A1
  • 2013-02-19
  • Local SEO

  • Поведенческие сигналы

  • Персонализация

Как Google использует всплески локальных запросов для быстрого обнаружения и индексации новых бизнесов
Google анализирует логи локальных поисковых запросов для обнаружения новых бизнесов. Система отслеживает термины, отсутствующие в текущей базе данных. Если частота использования такого термина в определенном регионе резко возрастает по сравнению с историческим уровнем, система идентифицирует его как название нового бизнеса и инициирует процесс его проверки (включая анализ отзывов) и добавления в индекс.
  • US9218420B1
  • 2013-02-26
  • Local SEO

  • Индексация

  • Поведенческие сигналы

Как Google в Autocomplete динамически выбирает между показом общих категорий и конкретных подсказок в зависимости от «завершенности запроса»
Google анализирует «меру завершенности запроса» (Measure of Query Completeness) по мере ввода текста пользователем. Если намерение неясно и существует много вариантов продолжения (низкая завершенность, высокая энтропия), система предлагает общие категории (например, «Регионы», «Бизнесы»). Если намерение становится ясным (высокая завершенность, низкая энтропия), система переключается на конкретные подсказки или сущности.
  • US9275147B2
  • 2012-06-18
  • Семантика и интент

  • Поведенческие сигналы

  • Персонализация

Как Google предугадывает ваш следующий запрос и заранее показывает его результаты в текущей выдаче
Google анализирует агрегированную историю поисковых сессий, чтобы предсказать, какой запрос пользователь введет следующим. Система может выполнить этот предполагаемый запрос (Inferred Action) заранее и встроить его результаты непосредственно в текущую страницу выдачи. Этот механизм часто активируется при показе персональных данных или Панелей знаний и учитывает контекст (время, сезон) и интересы пользователя.
  • US20170116284A1
  • 2013-12-30
  • Семантика и интент

  • Персонализация

  • SERP

Как Google вычисляет семантическую близость запросов, анализируя поведение пользователей при переформулировках
Google использует механизм для определения семантического расстояния между запросами (Generalized Edit Distance). Вместо подсчета изменений символов система анализирует исторические логи, чтобы понять, как пользователи переформулируют запросы. На основе этих данных вычисляется «стоимость» замены одного термина на другой с помощью Pointwise Mutual Information (PMI), что позволяет генерировать более релевантные подсказки и расширения запросов.
  • US8417692B2
  • 2011-05-18
  • Семантика и интент

  • Поведенческие сигналы

Как Google определяет язык поискового запроса, используя язык интерфейса, статистику слов и поведение пользователей
Google использует вероятностную модель для точной идентификации языка поискового запроса. Система комбинирует три ключевых фактора: статистику частотности слов в разных языках, язык интерфейса пользователя (например, Google.fr) и исторические данные о том, на какие результаты пользователи кликали ранее. Это позволяет корректно обрабатывать многоязычные и неоднозначные запросы для применения правильных синонимов и стемминга.
  • US8442965B2
  • 2007-04-19
  • Мультиязычность

  • Поведенческие сигналы

Как Google использует агрегированные поведенческие данные для маркировки результатов поиска и подсказок индикаторами ожидаемых действий
Google анализирует агрегированные данные о том, что пользователи делают после клика по результату поиска или подсказке (например, покупка, сохранение, бронирование). Если определенное действие статистически значимо для конкретного результата, Google добавляет к нему визуальный индикатор (значок или бейдж), чтобы помочь другим пользователям понять вероятный исход клика.
  • US11132406B2
  • 2018-05-18
  • Поведенческие сигналы

  • SERP

Как Google анализирует сессии пользователей и кластеризует концепции для генерации блока "Связанные запросы" (Related Searches)
Google анализирует последовательности запросов пользователей в рамках одной сессии для выявления шаблонов уточнений. Система кластеризует эти уточнения по смыслу, анализируя контент ранжирующихся по ним документов или другие запросы, ведущие на эти документы. Это позволяет предлагать пользователям концептуально различные варианты для сужения или изменения темы поиска.
  • US8065316B1
  • 2004-09-30
  • Семантика и интент

  • SERP

  • Поведенческие сигналы

Как Google индексирует действия пользователя на локальном устройстве для контекстного поиска (Архитектура Google Desktop)
Патент описывает архитектуру клиентского поискового движка (например, Google Desktop), который в реальном времени фиксирует взаимодействия пользователя с контентом (веб-страницы, документы, email). Система индексирует этот контент локально и может генерировать автоматические (имплицитные) запросы на основе текущего контекста пользователя, объединяя локальные и веб-результаты.
  • US7725508B2
  • 2004-06-30
  • Индексация

  • Local SEO

  • Поведенческие сигналы

Как Google использует данные социальных сетей, интересы и членство в сообществах для персонализации и расширения поисковых запросов
Google использует информацию из социальных сетей для персонализации поиска. Система анализирует профиль пользователя, его членство в сообществах (группах по интересам) и даже профили связанных с ним людей. На основе этих данных система может расширять исходный запрос пользователя дополнительными терминами или фокусировать поиск на предпочтительных сайтах, чтобы предоставить результаты, соответствующие контексту и интересам пользователя.
  • US8832132B1
  • 2004-06-22
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует машинное обучение для оптимизации обхода Knowledge Graph и поиска связанных концепций
Google оптимизирует обход Knowledge Graph для эффективного поиска семантически связанных фраз. Вместо анализа всех связей сущности система использует ML-модели для выбора только тех отношений (свойств), которые вероятнее всего приведут к ценным результатам. Этот выбор основан на истории поисковых запросов и контексте пользователя, что позволяет экономить вычислительные ресурсы и повышать релевантность предложений.
  • US10140286B2
  • 2017-02-22
  • Knowledge Graph

  • Семантика и интент

  • Персонализация

Как Google использует генетические алгоритмы для оптимизации порядка применения факторов ранжирования
Google использует генетические алгоритмы для определения оптимальной последовательности применения корректировок ранжирования (adjusters). Система тестирует разные комбинации порядка факторов, оценивая их эффективность на основе исторических данных о поведении пользователей (клики, время на сайте). Цель — найти ту последовательность, которая поднимает предпочитаемые пользователями результаты выше в выдаче.
  • US9152714B1
  • 2012-10-01
  • Поведенческие сигналы

  • SERP

Как Google динамически изменяет радиус локального поиска в зависимости от популярности бизнеса, типа запроса и активности пользователя
Google не использует фиксированный радиус для локального поиска. Система динамически определяет, насколько далеко пользователь готов пойти или поехать, учитывая тип запроса (кофейня или аэропорт), активность пользователя (пешком или за рулем) и популярность бизнеса. Это определяет, какие локальные компании попадают в выдачу (Local Pack и Карты).
  • US20150278860A1
  • 2014-03-25
  • Local SEO

  • Поведенческие сигналы

  • Персонализация

Как Google классифицирует запросы о медиа (фильмы, книги, музыка), используя данные из разных вертикалей поиска и поведенческие сигналы
Google использует многофакторную модель для определения, относится ли запрос к медиа-контенту (фильмам, книгам, музыке). Система анализирует результаты товарного поиска, предлагаемые подсказки (candidate queries), частоту запроса в специализированных вертикалях (Search Probability Ratio) и наличие специфичных ключевых слов. Это позволяет точнее определить интент пользователя и показать релевантные специализированные блоки или товарные предложения.
  • US8768910B1
  • 2012-04-13
  • Семантика и интент

  • Поведенческие сигналы

  • Мультимедиа

Как Google использует теги внутри видео, социальные связи и одобрения для генерации персонализированных рекомендаций
Google использует систему рекомендаций, анализирующую элементы (людей, объекты, места), отмеченные тегами непосредственно внутри видео. Система находит связанный контент, содержащий те же элементы. Если в видео отмечен человек, система может рекомендовать контент, который этот человек одобрил (смотрел, лайкнул), учитывая силу социальной связи между ним и зрителем, при строгом соблюдении настроек конфиденциальности.
  • US9639634B1
  • 2014-01-28
  • Персонализация

  • Мультимедиа

  • Поведенческие сигналы

Как Google использует удобство взаимодействия (UX) и аффинитивность пользователя для ранжирования поставщиков контента и услуг
Патент Google описывает систему ранжирования результатов для сущностей (например, музыка, фильмы, бронирования). Система использует «Меру Эффективности» (Effectiveness Measure), которая учитывает два ключевых фактора: насколько быстро пользователь может получить контент или завершить транзакцию после клика (Quantity of Steps) и насколько пользователь предпочитает конкретного поставщика (Affinity Measure), основываясь на его подписках, установленных приложениях и истории взаимодействий.
  • US9767159B2
  • 2014-06-13
  • SERP

  • Персонализация

  • Поведенческие сигналы

Как Google агрегирует социальные сигналы (лайки, +1) с канонических URL и верифицированных социальных профилей на авторитетную страницу
Google использует механизм для объединения социальных одобрений (например, лайков, шейров, +1) с разных, но связанных страниц в единый счетчик. Это включает агрегацию сигналов со всех канонических версий URL, а также с официально подтвержденных (через двухстороннюю связь) страниц в социальных сетях. Цель — показать общий уровень популярности контента, избегая фрагментации данных.
  • US20180052807A1
  • 2013-11-14
  • Поведенческие сигналы

  • EEAT и качество

Как Google анализирует последовательность запросов в сессии для предсказания следующего шага пользователя
Google отслеживает последовательность запросов пользователя в текущей поисковой сессии и сравнивает её с миллионами исторических сессий. Если текущий путь поиска совпадает с популярными маршрутами других пользователей, система предлагает наиболее частые следующие или завершающие запросы из этих данных. Это механизм для генерации контекстных подсказок, помогающих пользователю быстрее завершить задачу.
  • US8725756B1
  • 2008-11-11
  • Поведенческие сигналы

  • Семантика и интент

  • Персонализация

Как Google использует «Решающие Клики» и «Решающие Пропуски» для валидации и очистки правил синонимов
Патент Google описывает механизм валидации качества внутренних правил синонимов. Система анализирует логи запросов, чтобы изолировать влияние конкретного синонима на поведение пользователя. Если пользователь кликает на результат, содержащий ТОЛЬКО синоним (а не исходный термин), это засчитывается как «Решающий Клик». Если пропускает такой результат — как «Решающий Пропуск». На основе этих данных система вычисляет оценку уверенности для правила и удаляет неэффективные синонимы.
  • US8965882B1
  • 2011-11-22
  • Семантика и интент

  • Поведенческие сигналы

  • SERP

Как Google использует реальное местоположение и статус доступности исполнителей для ранжирования локальных услуг (LSA)
Google использует систему ранжирования для локальных услуг (например, в Local Services Ads), которая учитывает доступность исполнителя в реальном времени и его текущее физическое местоположение (GPS), а не только адрес офиса. Система взвешивает эти факторы вместе с детализированными отзывами (скорость ответа, время прибытия), чтобы приоритизировать исполнителей, которые могут быстрее всего прибыть к клиенту.
  • US20240013244A1
  • 2021-12-02
  • Local SEO

  • Поведенческие сигналы

Как Google использует агрегированные интересы социальных групп для персонализации и переранжирования поисковой выдачи
Google патентует механизм «Социальной линзы», позволяющий пользователям уточнять результаты поиска на основе интересов и поведения выбранного социального круга (например, «Коллеги» или «Геймеры»). Система агрегирует историю поиска и веб-активность участников круга в профиль интересов и использует эти данные для переранжирования или фильтрации выдачи, делая ее более релевантной контексту этой группы.
  • US9141617B1
  • 2012-10-26
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует профили пользователей для персонализации и изменения порядка показа рекламы в поиске
Google создает детальные профили интересов пользователей на основе истории поиска, поведения и взаимодействия с контентом. Эти профили используются для персонализации выдачи, в частности, для изменения порядка показа рекламы (Placed Content). Система вычисляет показатель сходства между профилем пользователя и профилем рекламы, корректируя стандартный рейтинг (CTR * Ставка), чтобы показывать пользователю наиболее релевантные объявления.
  • US7693827B2
  • 2004-07-13
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует социальный граф и профиль интересов пользователя для глубокой персонализации Knowledge Panel и поисковой выдачи
Google использует механизм для обогащения поисковой выдачи и Панелей Знаний (Knowledge Panels) персонализированными социальными аннотациями. Если тема запроса пересекается с сильными интересами пользователя (определяется по Topic Score), система подмешивает в выдачу релевантный контент из его социального графа, например, действия друзей, фотографии или чекины, связанные с темой.
  • US9934283B2
  • 2013-03-08
  • Персонализация

  • Knowledge Graph

  • SERP

  • 1
  • …
  • 7
  • 8
  • 9
  • 10
  • 11
  • …
  • 14
seohardcore