SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Поведенческие сигналы в Google: разборы патентов

Детальные разборы патентов Google, связанные с поведением пользователей
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google динамически меняет формулы ранжирования, адаптируя веса факторов под контекст запроса и пользователя
Google не использует единую модель ранжирования. Система использует машинное обучение для создания множества специализированных моделей (Predicted Performance Functions), обученных на исторических данных о кликах для разных контекстов (Search Contexts). При получении запроса система определяет контекст (тип запроса, язык, локация пользователя) и применяет ту модель, которая лучше всего предсказывает CTR в этой ситуации, динамически изменяя значимость различных сигналов ранжирования.
  • US8645390B1
  • 2008-08-07
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google классифицирует запросы как навигационные или исследовательские, чтобы регулировать количество показываемых результатов
Google использует систему для динамического определения количества отображаемых результатов поиска. Система классифицирует запрос как навигационный (поиск конкретного места/ресурса) или исследовательский (поиск вариантов). Классификация основана на анализе компонентов оценки релевантности (совпадение по названию vs. категории) и энтропии исторических кликов. При навигационном интенте количество результатов сокращается.
  • US9015152B1
  • 2011-07-20
  • Семантика и интент

  • Поведенческие сигналы

  • Local SEO

Как Google использует клики и пропуски пользователей для оценки и корректировки правил близости терминов (Proximity Rules)
Google анализирует поведение пользователей для оценки эффективности правил близости (Proximity Rules), которые влияют на ранжирование в зависимости от расстояния между ключевыми словами на странице. Система отслеживает, кликают ли пользователи на результаты, где термины расположены далеко друг от друга, или пропускают их. На основе этих данных (Click Count, Skip Count) вычисляется оценка качества правила, что позволяет Google динамически адаптировать важность фактора близости.
  • US9146966B1
  • 2013-01-07
  • Поведенческие сигналы

  • SERP

Как Google использует историю поиска и браузинга для персонализации выдачи и определения предпочтений пользователя
Google записывает и анализирует историю действий пользователя: запросы, клики по результатам и рекламе, посещенные страницы. Система группирует связанные действия в сессии, определяет "Предпочитаемые локации" на основе частоты и времени визитов (stay-time), и использует эту историю для изменения порядка ранжирования, повышая позиции ранее посещенных сайтов в персональной выдаче.
  • US20060224583A1
  • 2005-03-31
  • Персонализация

  • Поведенческие сигналы

Как Google использует контент, который вы смотрите (например, на ТВ), для автоматического переписывания и персонализации ваших поисковых запросов
Google может анализировать контент (фильмы, шоу, аудио), который пользователь потребляет на одном устройстве (например, ТВ), и использовать эту информацию как контекст для уточнения последующих поисковых запросов. Система распознает аудиовизуальный контекст и автоматически дополняет неоднозначные запросы пользователя, чтобы предоставить более релевантные результаты, в том числе на связанных устройствах (например, смартфоне).
  • US9244977B2
  • 2012-12-31
  • Персонализация

  • Семантика и интент

  • Поведенческие сигналы

Как Google использует офлайн-сигналы и авторитетность сущностей для ранжирования контента
Google использует реальные, офлайн-сигналы авторитетности для ранжирования документов, у которых отсутствует естественная ссылочная структура (например, оцифрованные книги). Система оценивает коммерческий успех документа (данные о продажах, списки бестселлеров), репутацию связанных сущностей (автора и издателя) и может переносить ссылочный авторитет с официальных сайтов этих сущностей на сам документ для улучшения его позиций в поиске.
  • US8799107B1
  • 2004-09-30
  • EEAT и качество

  • SERP

  • Поведенческие сигналы

Как Google решает, показывать ли промежуточную страницу (превью) или направлять пользователя сразу на сайт при клике в Поиске по картинкам
Google анализирует, насколько хорошо веб-страница представляет выбранное изображение («image-centricity»). Если изображение на странице качественное, заметное и удовлетворяет интент пользователя (на основе статических и поведенческих данных), Google направляет трафик из Поиска по картинкам напрямую на сайт. В противном случае, Google показывает промежуточный экран (Image Overlay).
  • US9135317B2
  • 2013-03-15
  • Поведенческие сигналы

  • Мультимедиа

  • Семантика и интент

Как Google использует данные о наведении курсора (Hover Data) для ранжирования изображений и борьбы с кликбейтными миниатюрами
Google использует данные о взаимодействии пользователя с миниатюрами в поиске по картинкам (наведение курсора) как сигнал интереса. Для редких запросов эти сигналы получают больший вес, дополняя недостаток данных о кликах. Система также вычисляет соотношение кликов к наведениям (Click-to-Hover Ratio), чтобы идентифицировать и понижать в выдаче «магниты кликов» — привлекательные, но нерелевантные изображения, которые собирают много наведений, но мало кликов.
  • US8819004B1
  • 2012-08-15
  • Поведенческие сигналы

  • Мультимедиа

  • SERP

Как Google создает и наполняет Панели Знаний (Knowledge Panels), используя шаблоны сущностей и популярность фактов
Google использует систему для отображения Панелей Знаний (Knowledge Panels) рядом с результатами поиска. Когда запрос относится к конкретной сущности (человеку, месту, компании), система выбирает соответствующий шаблон и наполняет его контентом из разных источников. Выбор фактов для отображения основан на том, как часто пользователи искали эту информацию в прошлом.
  • US9268820B2
  • 2012-08-03
  • Knowledge Graph

  • SERP

  • Семантика и интент

Как Google использует "ложные пропуски" (Fake Skips) для точной оценки качества своих правил синонимов
Google анализирует поведение пользователей для оценки качества синонимов, используемых при переписывании запросов. Патент вводит метрику "Fake Skip" (Ложный пропуск). Она фиксируется, если пользователь пропустил результат с синонимом, но кликнул на результат ниже, который также содержит этот синоним и исходный термин. Это позволяет точнее калибровать систему синонимов и не пессимизировать хорошие правила из-за неоднозначного поведения пользователей.
  • US8909627B1
  • 2012-10-26
  • Поведенческие сигналы

  • Семантика и интент

  • SERP

Как Google динамически фильтрует выдачу, уточняя интент пользователя после клика по результату
Google использует механизм для обработки неоднозначных запросов. Если выдача содержит результаты, относящиеся к разным сущностям (например, «Ягуар» как животное и как автомобиль), клик пользователя по одному из результатов сигнализирует о его интересе к конкретной сущности. При возврате на страницу выдачи система модифицирует SERP, скрывая или понижая результаты, связанные с нерелевантными сущностями, и фокусируя выдачу на выбранном интенте.
  • US9355158B2
  • 2013-08-29
  • Семантика и интент

  • SERP

  • Поведенческие сигналы

Как Google определяет географическую релевантность веб-страницы, анализируя физическое местоположение её посетителей
Google анализирует физическое местоположение (используя GPS, IP и т.д.) пользователей, которые взаимодействуют с веб-страницей (например, совершают клик и долго её изучают). Агрегируя эти данные, система определяет географическую релевантность страницы («Центр») и область её популярности («Дисперсию»), даже если на самой странице нет адреса. Эта информация используется для повышения позиций страницы в поиске для пользователей, находящихся в этой области.
  • US9552430B1
  • 2010-12-28
  • Local SEO

  • Поведенческие сигналы

Как Google использует социальный граф и активность друзей для персонализации и переранжирования результатов поиска
Google использует данные из социального графа пользователя и активность его контактов (лайки, шеры, комментарии, плейлисты) для изменения ранжирования результатов поиска. Контент, одобренный социальным окружением, повышается в выдаче и сопровождается аннотациями, объясняющими причину повышения и указывающими на свежесть социального действия.
  • US8959083B1
  • 2012-06-13
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует данные о кликах и пропусках для валидации и удаления неэффективных синонимов в поиске
Google постоянно тестирует правила подстановки (синонимы) для расширения запросов. Этот патент описывает механизм оценки эффективности этих правил с помощью анализа поведения пользователей (клики и пропуски результатов). Если пользователи часто пропускают результаты, содержащие подставленный термин, система автоматически удаляет это правило, очищая понимание запросов от нерелевантных синонимов.
  • US8965875B1
  • 2012-04-10
  • Поведенческие сигналы

  • Семантика и интент

  • EEAT и качество

Как Google использует контекст пользователя для генерации неявных поисковых запросов и проактивного показа результатов
Система Google отслеживает контекст пользователя в реальном времени (набираемый текст, открытые документы, письма). На основе этого контекста автоматически генерируются множественные неявные запросы. Система объединяет результаты из разных источников (локальных и глобальных) и проактивно показывает их пользователю, используя поведенческие данные (клики) для улучшения релевантности.
  • US7664734B2
  • 2004-03-31
  • Поведенческие сигналы

  • Персонализация

  • Семантика и интент

Как Google определяет ключевую тематику зданий и адресов, используя клики пользователей для показа релевантной рекламы
Google использует этот механизм для понимания основного назначения физического местоположения (адреса или здания). Система анализирует все бизнесы в этой локации и определяет, какие поисковые запросы чаще всего приводят к кликам по их листингам. Самый популярный запрос используется как доминирующее ключевое слово для выбора релевантной рекламы, когда пользователи ищут этот адрес или взаимодействуют с ним на Картах или в Street View.
  • US20120278171A1
  • 2011-07-22
  • Local SEO

  • Семантика и интент

  • Поведенческие сигналы

Как Google использует атрибуты пользователей и показатели предвзятости (Bias Measures) для персонализации ранжирования
Google анализирует, как разные группы пользователей (сегментированные по атрибутам, таким как интересы или демография) взаимодействуют с документами. Система вычисляет «показатель предвзятости» (Bias Measure), который показывает, насколько чаще или реже определенная группа взаимодействует с документом по сравнению с общей массой пользователей. При поиске Google определяет атрибуты пользователя и корректирует ранжирование, повышая или понижая документы на основе этих показателей предвзятости.
  • US9436742B1
  • 2014-03-14
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google интерпретирует последовательные запросы для автоматического уточнения поискового намерения пользователя
Google использует механизм для понимания контекста сессии, анализируя последовательные запросы (например, Q1: [рестораны в Москве], затем Q2: [итальянские]). Система автоматически объединяет их в уточненный запрос (Q3: [итальянские рестораны в Москве]), основываясь на исторических данных о том, как пользователи обычно уточняют запросы. Это позволяет системе лучше понимать намерение пользователя в диалоговом режиме.
  • US9116952B1
  • 2013-05-31
  • Семантика и интент

  • Поведенческие сигналы

Как Google использует связанные запросы и временный «бустинг» для обнаружения и тестирования релевантных документов, которые ранжируются низко
Патент описывает механизм улучшения поиска путем перемещения документов на более высокие позиции. Google идентифицирует документы, которые высоко ранжируются по связанным запросам (например, с синонимами, уточнениями или исправленными ошибками), но низко по исходному запросу, и повышает их. Цель — протестировать истинную релевантность этих документов и собрать пользовательский отклик (клики) для улучшения будущего ранжирования.
  • US8521725B1
  • 2003-12-03
  • Поведенческие сигналы

  • SERP

  • Семантика и интент

Как Google использует исторические данные о поведении пользователей для сохранения эффективных синонимов
Google постоянно обновляет модели, определяющие синонимы для расширения запросов. Этот патент описывает защитный механизм: если новая модель отключает синоним, который исторически давал хорошие результаты (пользователи были довольны выдачей), система автоматически вернет этот синоним в работу, опираясь на накопленные данные о поведении пользователей.
  • US8762363B1
  • 2012-06-25
  • Семантика и интент

  • Поведенческие сигналы

  • SERP

Как Google использует историю поиска и ссылки с предпочитаемых пользователем сайтов для персонализации выдачи
Google может персонализировать результаты поиска, используя историю запросов или просмотров пользователя для создания набора предпочтений (Document Bias Set). Если документы из этого набора, особенно те, которые также признаны глобально качественными, ссылаются на результаты поиска, эти результаты переранжируются (повышаются или понижаются) в соответствии с весами предпочтений пользователя.
  • US8538970B1
  • 2004-12-30
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует блокировку сайтов пользователями для персонализации выдачи и как глобальный сигнал ранжирования (Remove List Score)
Google позволяет пользователям удалять нежелательные документы или целые сайты из своей поисковой выдачи. Система агрегирует эти данные о блокировках от множества пользователей и использует их как глобальный сигнал ранжирования — «Remove List Score» — для выявления низкокачественного контента и улучшения качества поиска для всех.
  • US8417697B2
  • 2005-08-22
  • Персонализация

  • Поведенческие сигналы

  • Антиспам

Как Google решает, показывать ли прямой ответ, анализируя частоту использования естественного языка в исторических запросах о факте
Google анализирует исторические данные о том, как пользователи ищут конкретный факт. Если они часто используют естественный язык (например, «какая высота у Эйфелевой башни»), система считает, что пользователи действительно ищут этот факт. На основе этого рассчитывается «Оценка поиска фактов» (Fact-Seeking Score). Эта оценка используется как сигнал ранжирования, чтобы решить, нужно ли показывать прямой ответ (Factual Answer) и насколько высоко его разместить в результатах поиска.
  • US9396235B1
  • 2013-12-13
  • Семантика и интент

  • SERP

  • Поведенческие сигналы

Как Google связывает документы на основе поведения пользователей, времени взаимодействия и контентной близости для персонализации поиска
Google использует систему для определения "меры ассоциации" между различными документами (статьями, веб-страницами, письмами). Ассоциация рассчитывается на основе того, насколько близко по времени пользователь взаимодействовал с этими документами, насколько похож их контент и совпадают ли метаданные (например, автор). Эти связи используются для понимания пути пользователя и персонализации последующих результатов поиска.
  • US8131754B1
  • 2004-06-30
  • Поведенческие сигналы

  • Персонализация

  • Семантика и интент

Как Google проактивно уведомляет пользователей об изменении цен или доступности товаров на основе их предполагаемого намерения покупки
Google анализирует действия пользователя (поисковые запросы, посещения сайтов), чтобы выявить намерение в отношении сущностей (например, продуктов или авиабилетов). Если намерение сильное и происходит значительное изменение (падение цены или изменение доступности), Google проактивно отправляет уведомление со ссылками для завершения действия (например, покупки).
  • US20180357238A1
  • 2013-06-27
  • Семантика и интент

  • Поведенческие сигналы

  • Персонализация

Как Google персонализирует подсказки Autocomplete, анализируя запросы похожих пользователей и обновляя локальный кэш устройства
Google персонализирует подсказки Autocomplete (Search Suggest), анализируя поведение пользователей со схожими профилями (местоположение, интересы, история поиска). Система генерирует кастомизированное обновление для локального кэша устройства на основе запросов, введенных этими похожими пользователями. Это означает, что разные пользователи видят разные подсказки для одного и того же ввода.
  • US8868592B1
  • 2012-05-18
  • Персонализация

  • Поведенческие сигналы

  • Local SEO

Как Google использует машинное обучение для прогнозирования желаемого типа контента (Web, Images, News) и формирования смешанной выдачи (Universal Search)
Google анализирует исторические журналы поиска (пользователь, запрос, клики), чтобы обучить модель машинного обучения. Эта модель предсказывает вероятность того, что пользователь хочет получить результаты из определенного репозитория (например, Картинки или Новости). Google использует эти прогнозы, чтобы решить, в каких индексах искать и как смешивать результаты на финальной странице выдачи (Universal Search).
  • US7584177B2
  • 2005-06-29
  • Семантика и интент

  • SERP

  • Персонализация

Как Google персонализирует сниппеты и заголовки в выдаче на основе истории поиска и интересов пользователя
Google может динамически изменять сниппеты и заголовки (Title) результатов поиска, чтобы выделить ту часть контента на странице, которая соответствует известным интересам пользователя (история поиска, демография, недавний контекст). Это позволяет сделать представление выдачи более персонализированным, не обязательно изменяя ранжирование документов.
  • US9235626B2
  • 2013-03-13
  • Персонализация

  • SERP

  • Семантика и интент

Как Google использует контекст пользователя для предложения запросов до начала ввода текста (Zero-Input Queries)
Google анализирует историю поисковых запросов, группируя их в «контекстные кластеры» на основе схожести темы и обстоятельств ввода (время, местоположение, интересы). Когда пользователь открывает строку поиска, система оценивает его текущий контекст и мгновенно предлагает релевантные категории запросов (например, «Кино» или «Рестораны»), предсказывая намерение еще до ввода символов.
  • US10146829B2
  • 2015-09-28
  • Семантика и интент

  • Персонализация

  • Поведенческие сигналы

Как Google определяет географическую зону релевантности бизнеса на основе реального поведения пользователей (Catchment Areas)
Google определяет уникальную "зону охвата" (Catchment Area) для локального бизнеса, анализируя, из каких географических точек пользователи кликали на его результаты в поиске. Эта динамическая зона заменяет фиксированный радиус и используется для фильтрации кандидатов при локальном поиске, учитывая известность бренда, категорию бизнеса и физические препятствия.
  • US8775434B1
  • 2010-10-19
  • Local SEO

  • Поведенческие сигналы

  • 1
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • …
  • 14
seohardcore