SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Поведенческие сигналы в Google: разборы патентов

Детальные разборы патентов Google, связанные с поведением пользователей
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google анализирует поведение пользователей для выбора разнообразных связанных запросов и диверсификации контента на выдаче
Google использует механизм для диверсификации предложений на странице результатов (например, связанных запросов или рекламных блоков), основанный на анализе сессий пользователей. Система отбирает подсказки, которые часто следуют за исходным запросом (высокая «Utility»), но при этом редко следуют друг за другом (высокая «Diversity»). Это позволяет покрыть разные намерения пользователя, исходящие из одного неоднозначного запроса.
  • US8631030B1
  • 2010-12-28
  • Семантика и интент

  • SERP

  • Поведенческие сигналы

Как Google определяет локальный интент и предлагает уточнить запрос до его отправки в поиск
Google использует вероятностную модель, основанную на поведении пользователей, чтобы определить, имеет ли вводимый запрос локальный интент. Если вероятность высока, система предлагает пользователю добавить уточняющую информацию (например, местоположение) ещё до того, как запрос будет отправлен в поисковую систему. Это позволяет сразу формировать более точную и локализованную выдачу.
  • US8484190B1
  • 2008-12-18
  • Local SEO

  • Семантика и интент

  • Поведенческие сигналы

Как Google персонализирует результаты поиска в зависимости от сайта, с которого отправлен запрос
Google анализирует совокупные поисковые запросы и последующие клики пользователей, инициирующих поиск с определенного веб-сайта. На основе этих данных создается «Профиль Веб-сайта», отражающий коллективные интересы его аудитории. Этот профиль используется для переранжирования будущих результатов: один и тот же запрос, отправленный с разных сайтов, даст разную выдачу, адаптированную под контекст источника.
  • US8078607B2
  • 2006-03-30
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует персональные выделения контента и поведение чтения для гиперперсонализации поисковой выдачи
Google отслеживает, какой текст пользователи выделяют на веб-страницах и как они читают контент (включая скорость прокрутки и потенциально отслеживание взгляда). Эта информация используется для глубокой персонализации будущих поисковых запросов: система аннотирует знакомые результаты, использует содержание выделенного текста для подбора другого релевантного контента и автоматически возвращает пользователя к последнему просмотренному фрагменту.
  • US11514126B2
  • 2020-05-19
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google предсказывает запросы в Картах до того, как пользователь открыл приложение или ввел запрос
Google использует машинное обучение для анализа местоположения, скорости движения и истории пользователя, чтобы предсказать, когда он откроет приложение Карт и что будет искать. Это позволяет системе заранее подготовить релевантные ссылки на маршруты и показать их мгновенно при запуске приложения, обеспечивая нулевую задержку.
  • US12141136B2
  • 2019-12-05
  • Персонализация

  • Семантика и интент

  • Поведенческие сигналы

Как Google динамически повышает детский контент в безопасном поиске, чтобы компенсировать недостаток данных о популярности
Google использует механизм для улучшения видимости детского контента (Youth-Oriented, Y) в безопасной выдаче. Поскольку такой контент часто имеет меньше поведенческих данных, чем общий контент (General Audience, G), система вычисляет динамический повышающий коэффициент (Query-Dependent Factor). Этот коэффициент рассчитывается путем статистического сравнения метрик популярности Y и G контента для конкретного запроса и применяется только к результатам, прошедшим порог релевантности.
  • US10671616B1
  • 2015-02-22
  • Безопасный поиск

  • SERP

  • Поведенческие сигналы

Как Google определяет популярность и ранжирует физические события (концерты, выставки) в локальной выдаче
Google использует специализированную систему для ранжирования физических событий в определенном месте и времени. Система вычисляет оценку популярности события на основе множества сигналов: количества упоминаний в интернете, кликов на официальную страницу, популярности связанных сущностей (артистов, команд), значимости места проведения и присутствия в общих поисковых запросах о событиях. Затем результаты переранжируются для обеспечения разнообразия, понижая схожие события или события одной категории.
  • US9424360B2
  • 2013-03-12
  • Local SEO

  • Поведенческие сигналы

Как Google использует персональные оценки и метки (аннотации) для персонализации и переранжирования поисковой выдачи
Патент Google описывает систему, позволяющую пользователям явно оценивать, комментировать и помечать веб-страницы. Эти аннотации используются для переранжирования будущих результатов поиска пользователя, повышая полезные страницы и понижая бесполезные. Система также вычисляет общие оценки сайтов (Site Rating) на основе оценок отдельных страниц для дальнейшей персонализации.
  • US8990193B1
  • 2005-09-15
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует машинное обучение для предсказания повторяющихся запросов и предоставления динамических результатов
Google использует систему машинного обучения для анализа контекста и поведения пользователей, чтобы предсказать, какие запросы будут повторяться в будущем. Для этих «повторяемых запросов» система упрощает ввод через ярлыки или меню. При повторном выполнении Google может намеренно изменять выдачу, предоставляя динамические результаты, и приоритизировать сканирование связанного контента.
  • US11868417B2
  • 2019-11-06
  • Поведенческие сигналы

  • Семантика и интент

  • Персонализация

Как Google использует иерархию истории поиска (Profile Tree) для персонализации поисковых подсказок
Google создает иерархическое дерево интересов (Profile Tree) для пользователя на основе его истории поиска, кликов и просмотров. При вводе запроса система переранжирует стандартные подсказки. Подсказки, соответствующие более глубоким и специфичным (нишевым) интересам пользователя, получают повышение, вытесняя общие популярные варианты.
  • US8316019B1
  • 2010-06-23
  • Персонализация

  • Поведенческие сигналы

Как Google использует поведение пользователей для автоматического перевода запросов в поиске по картинкам и видео
Google улучшает поиск по визуальному контенту (картинки, видео), анализируя, как пользователи переформулируют запросы на других языках в рамках одной сессии. Если пользователь ввел запрос на одном языке, а затем его перевод на другом, система запоминает эту связь («двуязычное уточнение»). В дальнейшем система автоматически добавляет самый популярный перевод к исходному запросу, чтобы показать больше релевантных результатов на разных языках.
  • US8577909B1
  • 2009-06-09
  • Мультиязычность

  • Поведенческие сигналы

  • Семантика и интент

Как Google использует специфические сигналы (частоту постинга, рекламу и популярность) для оценки качества блогов и борьбы с автоматизированным контентом
Google разработал систему для ранжирования блогов, которая вычисляет независимую от запроса Оценку Качества (Quality Score). Эта оценка учитывает сигналы популярности (подписки, CTR), авторитетности (Pagerank, ссылки), а также выявляет спам-паттерны: автоматизированную частоту и размер постов, расположение рекламы и ссылочные схемы. Финальный рейтинг определяется комбинацией этой оценки качества и стандартной релевантности.
  • US8244720B2
  • 2005-09-13
  • EEAT и качество

  • Антиспам

  • Индексация

Как Google использует логи запросов, чтобы выбирать лучшие переводы для межъязыковых подсказок в Autocomplete
Google разработал систему для улучшения качества межъязыковых поисковых подсказок (Autocomplete). Вместо буквального перевода система оценивает различные варианты перевода, отдавая предпочтение тем фразам, которые чаще всего используются носителями целевого языка в качестве реальных поисковых запросов. Это гарантирует, что предложенная подсказка является не только точным переводом, но и эффективным поисковым запросом.
  • US20120330990A1
  • 2011-09-29
  • Мультиязычность

  • Семантика и интент

  • Поведенческие сигналы

Как Google проактивно формирует путеводители, анализируя разрозненные действия пользователя для предсказания его поездок
Google патентует систему для предсказания будущих поездок пользователя путем анализа его действий (поисковые запросы, электронные письма, просмотры веб-страниц). Система связывает эти действия с сущностями и локациями, вычисляет вероятность поездки и проактивно предоставляет сводную информацию (путеводитель) без прямого запроса пользователя. Это механизм для систем типа Google Discover, фокусирующийся на долгосрочном понимании намерений пользователя.
  • US9146116B1
  • 2014-06-04
  • Персонализация

  • Семантика и интент

  • Поведенческие сигналы

Как Google собирает и анализирует поведение пользователей после клика для оценки удовлетворенности поиском
Google использует распределенную сеть агентов (браузеры, тулбары, скрипты на сайтах) для сбора детальной навигационной статистики и данных о поведении пользователей после перехода из поиска. Ключевым показателем является частота «завершения поисковой сессии» на странице, что указывает на удовлетворенность пользователя. Эта система позволяет Google оценивать качество страниц на основе реальных пользовательских взаимодействий.
  • US8601119B1
  • 2011-07-01
  • Поведенческие сигналы

  • SERP

Как Google определяет многоязычных пользователей и показывает им результаты на языке, отличном от языка запроса
Google использует механизм для идентификации пользователей, владеющих несколькими языками, анализируя язык текущего запроса, местоположение пользователя и историю его активности. Если пользователь находится в регионе с доминирующим языком (L2), но ищет на другом языке (L1), и система подтверждает владение обоими, Google переводит запрос на L2 и ищет контент на обоих языках. Это позволяет показывать наиболее релевантные результаты, даже если их язык отличается от языка запроса.
  • US20230325421A1
  • 2021-07-21
  • Мультиязычность

  • Поведенческие сигналы

  • Персонализация

Как Google использует историю посещений (чекины) пользователя и его друзей для персонализации локальной выдачи
Google может повышать в ранжировании места (рестораны, магазины), которые посещал сам пользователь или его контакты из социального графа. Система учитывает данные о физическом присутствии, давность посещения и силу социальной связи, чтобы персонализировать результаты локального поиска.
  • US9659065B1
  • 2013-06-05
  • Персонализация

  • Local SEO

  • Поведенческие сигналы

Как Google использует клики и пропуски (Clicks/Skips) для определения важности порядка слов в запросе
Google анализирует поведение пользователей для оценки правил, которые меняют порядок слов в запросе (Reordering Rules). Если пользователи кликают на результаты с измененным порядком слов, правило считается полезным (Click Count). Если пропускают такие результаты ради нижестоящих (Skip Count), правило отключается. Это позволяет системе автоматически понять, когда порядок слов критичен для смысла запроса, а когда им можно пренебречь.
  • US8959103B1
  • 2012-05-25
  • Поведенческие сигналы

  • Семантика и интент

  • SERP

Как Google отслеживает, анализирует и использует историю поведения пользователя для персонализации поиска и визуализации активности
Патент Google описывает инфраструктуру для сбора и анализа истории действий пользователя (запросы, клики по органике и рекламе, просмотры страниц). Система использует эти данные, включая метрики вовлеченности вроде «stay-time», для определения «предпочитаемых местоположений» и персонализации выдачи. Также описан метод графической визуализации объема этой активности.
  • US7694212B2
  • 2005-03-31
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google (YouTube) ранжирует рекомендуемые видео, балансируя релевантность, монетизацию и вероятность просмотра рекламы
Google использует систему для ранжирования рекомендуемых (дополнительных) видео на платформах типа YouTube. Система учитывает не только релевантность и потенциал монетизации видео, но и «экспериментальные данные» о том, как пользователи взаимодействуют с рекламой в этом видео. Цель — показывать видео, где пользователи с большей вероятностью досмотрят рекламу, максимизируя доход и минимизируя отток пользователей.
  • US9405775B1
  • 2013-03-15
  • Мультимедиа

  • Поведенческие сигналы

Как Google использует совместное посещение сайтов в рамках одной сессии (Co-visitation) для классификации ресурсов по темам
Google анализирует, какие ресурсы пользователи посещают в рамках одной сессии (поисковой или браузерной). Если пользователь посещает известный ресурс по теме А, а затем в той же сессии посещает новый ресурс Б (даже в ответ на другой запрос), система предполагает, что ресурс Б также связан с темой А. Этот механизм позволяет автоматически классифицировать контент на основе реального поведения пользователей.
  • US20140108376A1
  • 2008-11-26
  • Семантика и интент

  • Поведенческие сигналы

Как Google сегментирует сложные запросы на смысловые компоненты для генерации поисковых подсказок и связанных запросов
Google использует механизм для генерации уточнений запроса (поисковых подсказок или связанных запросов) путем разделения исходного запроса на семантические компоненты (устойчивые фразы) с помощью вероятностного анализа. Система находит уточнения для каждого компонента по отдельности, а затем рекомбинирует их, сохраняя исходный порядок. Финальные кандидаты строго фильтруются на основе пользовательских данных (CTR) и синтаксической схожести.
  • US9703871B1
  • 2010-07-30
  • Семантика и интент

  • SERP

  • Поведенческие сигналы

Как Google анализирует цепочки запросов для создания структурированного контекста и передает его рекламодателям через URL клика
Google анализирует последовательные поисковые запросы пользователя (например, «Футболки», затем «маленький размер»), чтобы понять полный интент, и формирует «Структурированный Запрос». Когда пользователь кликает на рекламу, этот обогащенный контекст («тип: футболка, размер: маленький») встраивается в URL и передается рекламодателю. Это позволяет рекламодателю направить пользователя на наиболее релевантную целевую страницу (deep linking).
  • US9582537B1
  • 2014-08-21
  • Семантика и интент

  • Поведенческие сигналы

Как Google (YouTube) динамически приоритизирует каверы и альтернативные версии песен в блоке рекомендаций
Google использует механизм для улучшения рекомендаций на контент-платформах (например, YouTube). Когда пользователь проявляет интерес к конкретной песне в просматриваемом видео (явно или неявно), система идентифицирует другие видео, содержащие альтернативные версии этой же песни (каверы, живые выступления). Затем блок рекомендаций обновляется, чтобы приоритизировать показ этих альтернативных версий над стандартными похожими видео.
  • US10345998B2
  • 2016-11-10
  • Мультимедиа

  • Персонализация

  • Поведенческие сигналы

Как Google динамически расширяет результаты поиска на SERP, добавляя превью и контент из других источников
Анализ патента Google, описывающего механизм пользовательского интерфейса (UI), позволяющий пользователям взаимодействовать с результатом поиска (например, свайпом) для отображения «Расширенного контента» прямо на SERP. Этот контент может включать предварительный просмотр страниц сайта или релевантную информацию из других источников («off-page content»), например, карты или изображения. При этом слот результата расширяется, предоставляя больше информации без ухода со страницы выдачи.
  • US9201925B2
  • 2012-11-08
  • SERP

  • Поведенческие сигналы

Как Google использует ручное изменение порядка результатов поиска пользователями для обучения алгоритмов ранжирования
Google патентует механизм, позволяющий пользователям вручную изменять порядок результатов поиска на странице (например, перетаскиванием). Эти действия интерпретируются как явные сигналы предпочтений (пользователь считает один результат лучше другого). Google агрегирует эти данные для обучения моделей машинного обучения и улучшения глобальных алгоритмов ранжирования или использует их для персонализации выдачи.
  • US8312009B1
  • 2007-02-14
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует матрицы схожести и анализ сессий для генерации предлагаемых поисковых запросов
Google использует систему для предложения альтернативных поисковых запросов, предсказывая следующий шаг пользователя в сессии. Система генерирует варианты путем замены терминов на контекстуально похожие (используя матрицы схожести) или путем расширения/сокращения фраз (используя таблицы соединений). Предложения оцениваются на основе их релевантности контексту сессии и исторической вероятности клика по их результатам.
  • US8438142B2
  • 2005-05-04
  • Семантика и интент

  • Поведенческие сигналы

  • Персонализация

Как Google использует историю поиска и контекст (время, местоположение) для проактивного предложения релевантных прошлых результатов на разных устройствах
Google патентует систему, которая анализирует историю поиска пользователя и использует контекстуальные сигналы (время, местоположение и прошлое поведение, такое как клики и время на сайте), чтобы определить актуальность прошлых результатов. Система проактивно предлагает эти результаты в виде информационных элементов на разных устройствах, устраняя необходимость повторного поиска, например, показывая ресторан, который пользователь искал ранее и рядом с которым находится сейчас.
  • US8805828B1
  • 2012-01-13
  • Персонализация

  • Поведенческие сигналы

Как Google использует контекст и историю пользователя для понимания голосовых команд и запуска неявных поисковых запросов
Патент раскрывает методы интерпретации голосового ввода на носимых устройствах. Система анализирует обширный контекст (недавние документы, местоположение, календари), чтобы определить намерение пользователя. Ключевой особенностью является генерация «неявных поисковых запросов» (Implicit Search Requests) автоматически, без прямой команды пользователя, на основе его текущей деятельности.
  • US20130018659A1
  • 2011-11-08
  • Семантика и интент

  • Персонализация

  • Поведенческие сигналы

Как Google использует машинное обучение для определения значимости обновлений контента на веб-страницах
Google использует модель машинного обучения (например, Support Vector Machine) для анализа изменений между двумя версиями веб-страницы. Система оценивает контентные, структурные (ссылки) и поведенческие (трафик) признаки, чтобы классифицировать обновление как «значимое» или «незначимое». Это позволяет поисковой системе понять, какие обновления требуют внимания (например, для оценки свежести или переиндексации), а какие являются техническим шумом.
  • US8607140B1
  • 2010-12-21
  • Свежесть контента

  • Индексация

  • Поведенческие сигналы

  • 1
  • …
  • 8
  • 9
  • 10
  • 11
  • 12
  • …
  • 14
seohardcore