SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Структура сайта в Google: разборы патентов

Детальные разборы патентов Google, связанные с внутренней структурой сайта
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google использует структуру сайта и анкорные тексты для извлечения Сущностей из шумных заголовков (Title)
Google использует метод для точного определения основного объекта (Сущности) веб-страницы, когда заголовок (Title) содержит лишнюю информацию (брендинг, рубрики). Система анализирует заголовки похожих страниц на том же сайте (Peer Documents) и анкорные тексты, ссылающиеся на них. Выявляя повторяющиеся шаблоны (префиксы и суффиксы) в заголовках, Google отделяет название Сущности от шума.
  • US7590628B2
  • 2006-03-31
  • Семантика и интент

  • Структура сайта

  • Ссылки

Как Google использует данные о поведении пользователей для генерации и ранжирования Sitelinks (Дополнительных ссылок сайта)
Патент описывает механизм генерации Sitelinks (дополнительных ссылок под основным результатом поиска). Google анализирует логи доступа пользователей (частоту кликов, время на странице) и другие факторы качества, чтобы определить наиболее важные внутренние страницы сайта. Эти страницы затем отображаются в виде ранжированного списка для ускорения навигации пользователя.
  • US7996391B2
  • 2005-06-20
  • Ссылки

  • Поведенческие сигналы

  • SERP

Как Google переносит авторитетность бренда и описательные термины между страницами одного сайта для улучшения ранжирования
Google использует механизмы для улучшения релевантности страниц путем переноса сигналов внутри сайта. Система распространяет "авторитетные" термины (например, бренд) с главной страницы на внутренние разделы и, наоборот, поднимает "высокоописательные" термины (например, адреса, категории, уникальные слова) с внутренних страниц на главную. Это позволяет ранжировать наиболее подходящую страницу сайта, даже если нужные ключевые слова на ней отсутствуют.
  • US7933890B2
  • 2006-03-31
  • Структура сайта

  • Техническое SEO

  • Индексация

Как Google выбирает Sitelinks, анализируя визуальное расположение и структуру DOM навигационных меню
Google использует механизм для генерации Sitelinks путем рендеринга страницы и анализа DOM-структуры. Система определяет визуальное расположение (координаты X, Y) гиперссылок и группирует их на основе визуальной близости и общих родительских элементов. Sitelinks выбираются исключительно из доминирующей группы (например, главного меню), а ссылки из других групп игнорируются.
  • US9053177B1
  • 2012-06-11
  • SERP

  • Ссылки

  • Структура сайта

Как Google определяет основной контент страницы, анализируя визуальную структуру и характеристики разделов
Google использует систему для идентификации основного контента веб-страницы путем её разделения на логические разделы на основе визуального макета. Система оценивает характеристики каждого раздела (соотношение ссылок к тексту, количество слов, изображения, расположение) относительно характеристик всей страницы, чтобы выделить наиболее значимый контент и отделить его от навигации и шаблонов.
  • US20140372873A1
  • 2011-09-30
  • Структура сайта

  • Техническое SEO

  • Ссылки

Как Google использует внутренние ссылки и структуру DOM для генерации шаблонов сайта и извлечения структурированных сниппетов
Google анализирует повторяющиеся блоки внутренних ссылок (например, списки товаров). Если текст возле ссылки на исходной странице совпадает с текстом на целевой странице, Google определяет DOM-структуру этого текста и создает шаблон домена. Этот шаблон позволяет автоматически извлекать ключевую информацию (например, цену и характеристики) для сниппетов со всех однотипных страниц сайта, даже без микроразметки.
  • US9971746B2
  • 2014-01-30
  • Структура сайта

  • SERP

  • Ссылки

Как Google использует контент вокруг ссылок (вне анкора) для генерации «Синтетического Описательного Текста» и ранжирования вашего сайта
Google может генерировать «Синтетический Описательный Текст» для страницы, анализируя контент и структуру сайтов, которые на нее ссылаются. Система создает структурные шаблоны для извлечения релевантного текста (например, заголовков или абзацев рядом со ссылкой), который затем используется как мощный сигнал ранжирования. Этот механизм позволяет лучше понять содержание страницы, особенно если традиционный анкорный текст низкого качества или отсутствует.
  • US9208233B1
  • 2012-12-31
  • Ссылки

  • Семантика и интент

  • Индексация

Как Google выбирает, сортирует и форматирует динамические Sitelinks на основе типа контента и свежести страниц
Патент Google описывает систему генерации Sitelinks (саб-ссылок), которые ведут непосредственно на конечный контент (статьи, видео, товары), а не на разделы сайта. Система определяет категорию контента и применяет специфические правила сортировки (например, по свежести для новостей), которые отличаются от стандартного ранжирования. Также используется специальное форматирование для улучшения навигации в SERP.
  • US9081832B2
  • 2013-03-15
  • Ссылки

  • SERP

  • Свежесть контента

Как Google автоматически определяет важность различных частей веб-страницы (DOM-узлов) для ранжирования
Google анализирует коллекции похожих структурированных документов (например, товарных карточек) и создает общую модель (DOM). Затем система изучает логи запросов и кликов, чтобы понять, какие части структуры (заголовки, основной контент, реклама) чаще всего содержат ключевые слова из успешных запросов. Этим частям присваивается больший вес при расчете релевантности.
  • US8538989B1
  • 2008-02-08
  • Семантика и интент

  • Индексация

  • Структура сайта

Как Google генерирует интерактивные и иерархические Sitelinks на основе структуры и популярности разделов сайта
Google анализирует навигационную иерархию сайта (DOM), популярность ссылок и глубину разделов для создания интерактивного представления ресурса (расширенных Sitelinks) в SERP. Это позволяет пользователям просматривать ключевые категории и вложенные ссылки через интерфейс вкладок, не покидая страницу результатов поиска.
  • US9348846B2
  • 2012-07-02
  • Структура сайта

  • SERP

  • Ссылки

Как Google игнорирует часто меняющийся контент и ссылки в нем, определяя "временные" блоки шаблона сайта
Google использует механизм для отделения основного контента от динамического шума (реклама, виджеты, дата). Система сравнивает разные версии одной страницы, чтобы найти часто меняющийся контент. Затем она анализирует HTML-структуру (путь) этого контента и статистически определяет, является ли этот структурный блок "временным" для всего сайта. Такой контент игнорируется при индексации и таргетинге рекламы, а ссылки в нем могут не учитываться при расчете PageRank.
  • US8121991B1
  • 2008-12-19
  • Индексация

  • Техническое SEO

  • Структура сайта

Как Google использует генеративный ИИ для создания чата с конкретным сайтом прямо в поисковой выдаче и предоставления глубинных ссылок
Google патентует механизм, позволяющий пользователям взаимодействовать с конкретным результатом поиска через интерфейс чата (prompt input interface) прямо на странице выдачи. Искусственный интеллект анализирует запрос пользователя и его последующий промпт, определяет намерение (поиск информации, действие или навигация) и предоставляет глубинные ссылки (deep links) на конкретные внутренние страницы этого же домена в виде conversational response.
  • US12353458B2
  • 2024-07-19
  • Ссылки

  • Семантика и интент

  • SERP

Как Google генерирует «синтетический анкорный текст», анализируя структуру и контекст ссылающихся страниц
Google анализирует структурно похожие страницы, ссылающиеся на различные ресурсы. Определяя, где известные поисковые запросы (Seed Queries) появляются в структуре этих ссылающихся страниц (например, в заголовках или Title), Google создает шаблоны. Эти шаблоны затем используются для извлечения текста из аналогичных мест на других страницах, создавая «синтетический описательный текст» (аналог анкорного текста) для целевых ресурсов. Это улучшает ранжирование, даже если фактический анкорный текст низкого качества.
  • US9208232B1
  • 2012-12-31
  • Ссылки

  • Структура сайта

  • Семантика и интент

Как Google использует организационные структуры (папки, ярлыки) как ссылки для расчета PageRank и ранжирования документов
Google может анализировать, как документы организованы пользователями (например, в папках, через ярлыки или закладки), и использовать эти организационные структуры для расчета рейтинга документа. Документы, концептуально сгруппированные вместе, передают друг другу ранжирующий вес (аналогично PageRank), причем более тесные связи (например, в одной папке) передают больше веса, чем более слабые связи (например, в соседних папках).
  • US8090736B1
  • 2004-12-30
  • Ссылки

  • SERP

  • Структура сайта

Как Google использует данные веб-поиска и клики пользователей для классификации бизнесов и построения иерархии категорий
Google анализирует логи веб-поиска (введенные ключевые слова и последующие клики по результатам), чтобы понять, как пользователи интуитивно классифицируют бизнесы. Эти данные используются для автоматического построения динамической иерархической структуры категорий. Эта структура затем применяется для улучшения точности поиска, в частности, для оптимизации моделей распознавания речи в голосовых системах.
  • US7840407B2
  • 2006-10-13
  • Поведенческие сигналы

  • Семантика и интент

  • Структура сайта

Как Google использует структурированные данные для отображения прямых ссылок на песни в результатах поиска (Rich Snippets)
Google улучшает результаты поиска музыки, извлекая детали песен (названия, альбомы, продолжительность) из структурированной разметки (например, HTML5 microdata) на веб-страницах. Это позволяет Google отображать прямые ссылки на конкретные песни (вторичные ссылки) внутри основного блока результатов поиска, при условии соблюдения определенных порогов качества и популярности.
  • US9128993B2
  • 2012-08-15
  • Ссылки

  • SERP

  • Индексация

Как Google использует внутреннюю структуру сайта и авторитетность для корректировки ранжирования
Google использует механизм для уточнения позиций в поиске, анализируя как внешние сигналы (авторитетность сайта), так и внутренние сигналы (структура сайта, внутренние ссылки). Система вычисляет «Внутрисайтовую оценку ранжирования» для определения важности страницы внутри сайта и использует её для корректировки «Глобальной оценки ранжирования». Однако влияние внутренних факторов ограничивается уровнем доверия к сайту.
  • US8843477B1
  • 2011-10-31
  • Структура сайта

  • Техническое SEO

  • EEAT и качество

Как Google автоматизирует создание структуры категорий и оптимизирует мерчандайзинг на сайтах E-commerce
Система для автоматической организации интернет-магазинов. Она анализирует товарный фид, используя NLP для создания релевантных категорий. Затем система сортирует товары внутри категорий, применяя алгоритмы оптимизации (Decision Trees), основанные на данных о продажах (конверсии, отказы) и внешних поисковых трендах, для максимизации эффективности сайта мерчанта.
  • US20170116658A1 (Патентная заявка)
  • 2015-10-22
  • Семантика и интент

  • Структура сайта

  • Поведенческие сигналы

Как Google использует семантическую структуру HTML (списки и заголовки) для расчета расстояния между ключевыми словами
Google анализирует структуру веб-страницы, включая списки и заголовки, чтобы определить семантическое расстояние между ключевыми словами. Система выявляет семантические блоки, даже если они не размечены явными HTML-тегами, путем анализа повторяющихся паттернов форматирования. Расстояние между терминами рассчитывается на основе этой структуры: слова внутри одного элемента списка считаются близкими, а слова в разных элементах — далекими, независимо от физического расстояния.
  • US7716216B1
  • 2004-03-31
  • Семантика и интент

  • Структура сайта

  • Техническое SEO

Как Google использует шаблоны сайтов и структурированные компоненты для извлечения и расширения наборов сущностей (Entity Set Expansion)
Патент описывает, как Google автоматически расширяет наборы данных (например, таблицы или списки). Система анализирует существующие сущности и ищет новые похожие элементы в интернете. Для этого используются два ключевых метода: анализ повторяющихся шаблонов веб-страниц (Template Analysis) и извлечение данных из структурированных компонентов (HTML-таблиц и списков) на сайтах.
  • US8452791B2
  • 2009-01-16
  • Knowledge Graph

  • Семантика и интент

  • Структура сайта

Как Google генерирует сниппеты для Sitelinks, используя контент целевых страниц, а не исходный запрос
Google использует специальный метод для генерации сниппетов в расширенных результатах поиска (Sitelinks). Сниппет для главной страницы часто основан на запросе пользователя, но сниппеты для внутренних ссылок (sub-documents) генерируются на основе "репрезентативных ключевых слов" (например, Title) самой внутренней страницы, а не исходного навигационного запроса. Это позволяет сделать описание Sitelinks более точным и релевантным теме целевой страницы.
  • US9081831B2
  • 2013-03-14
  • SERP

  • Семантика и интент

  • Структура сайта

Как Google идентифицирует и игнорирует шаблонный контент (Boilerplate) для фокусировки на основном содержании страницы
Google использует методы для отделения основного содержания страницы от повторяющихся элементов (навигация, футеры, копирайты). Анализируя частоту повторений на сайте, пространственное расположение блоков, окружающий код и цели ссылок, система классифицирует контент как шаблонный (boilerplate) и исключает его из индексации или значительно понижает его вес.
  • US8041713B2
  • 2004-03-31
  • Индексация

  • Техническое SEO

  • Структура сайта

Как Google идентифицирует и игнорирует навигацию, футеры и рекламу на странице для понимания основного контента
Google использует технологию анализа структуры документа (DOM-дерева) для отделения основного содержания страницы от шаблонных элементов (boilerplate) — таких как навигационные меню, футеры, списки ссылок и рекламные блоки. Система анализирует геометрические, структурные и иерархические признаки элементов (например, размер, форму, количество дочерних ссылок, расположение), чтобы классифицировать контент как шаблонный и исключить его при анализе тематики страницы.
  • US8898296B2
  • 2012-08-01
  • Структура сайта

  • Семантика и интент

  • Техническое SEO

Как Google автоматически находит похожие страницы внутри одного сайта, используя текст текущей страницы как запрос (Query by Example)
Анализ патента Google, описывающего технологию автоматического поиска связанного контента внутри одного веб-сайта. Система анализирует текст просматриваемой страницы, извлекает и взвешивает ключевые термины на основе их уникальности, а затем использует их как поисковый запрос (Query by Example) для нахождения тематически похожих документов на том же сайте. Используются классические формулы информационного поиска (TF-IDF/BM25).
  • US8756212B2
  • 2009-07-06
  • Индексация

  • Семантика и интент

  • Структура сайта

Как Google сегментирует веб-страницы на семантические блоки (хедер, футер, контент) с помощью анализа геометрии рендеринга
Google использует механизм "псевдо-рендеринга" для анализа геометрической структуры веб-страницы и её разделения на семантически различные области (чанки), такие как основное содержимое, навигация, футер и реклама. Это позволяет системе определять важность контента и ссылок в зависимости от их расположения на странице.
  • US7913163B1
  • 2004-09-22
  • Семантика и интент

  • Структура сайта

  • Техническое SEO

Как Google планирует заменить статические веб-сайты страницами, генерируемыми ИИ на лету из «сырого» контента
Патент описывает радикально новую архитектуру веба («Generative Navigational Corpus»), где контент-провайдеры предоставляют «сырые» данные (Seed Content), а Большая Фундаментальная Модель (LFM) генерирует веб-страницы, UI и ссылки в реальном времени, адаптируя формат и структуру под конкретный интент пользователя и контекст навигации.
  • US20250094521A1
  • 2024-09-18
  • Семантика и интент

  • Персонализация

  • Индексация

Как Google определяет наиболее релевантный раздел структурированного документа (сайта или книги) для показа в выдаче
Google использует структуру документа (например, иерархию сайта или главы книги) для определения наилучшей точки входа для пользователя. Система анализирует, где именно в структуре сконцентрированы (кластеризованы) ключевые слова из запроса. Вместо показа всего документа, Google может представить конкретный раздел, главу или страницу, которая наиболее точно соответствует запросу, основываясь на плотности и расположении этих совпадений.
  • US9031898B2
  • 2004-09-27
  • SERP

  • Семантика и интент

  • Структура сайта

Как Google генерирует синтетические запросы, анализируя шаблоны и структуру HTML на сайте
Google использует структурное сходство между страницами на одном сайте для генерации новых, "синтетических" запросов. Система анализирует, в каких HTML-элементах (например, или <h1>) находятся термины из уже известных эффективных запросов. Затем она создает шаблон и применяет его к другим похожим страницам этого же сайта для извлечения новых фраз, улучшая понимание шаблонного контента.</div> </div> <div class="bottom-box"> <ul class="info"> <li>US8346792B1</li><li> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="1.25" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-calendar-clock-icon lucide-calendar-clock"><path d="M16 14v2.2l1.6 1"></path><path d="M16 2v4"></path><path d="M21 7.5V6a2 2 0 0 0-2-2H5a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h3.5"></path><path d="M3 10h5"></path><path d="M8 2v4"></path><circle cx="16" cy="16" r="6"></circle></svg> 2010-11-09</li> </ul> <ul class="options-list"> <li><p>Структура сайта</p></li> <li><p>Семантика и интент</p></li> <li><p>SERP</p></li> </ul> </div> </div> </div> </div> </div> <div class="listing-single"> <div class="listing-block-five"> <div class="image-box"> <div class="se-icon"><img src="/static/img/google-logo-png-29534.png" alt=""></div></div> <div class="inner-box"> <div class="image-box"> </div> <div class="content-box"> <div class="upper-box"> <a class="pat-listing-item-headlink" href="https://seohardcore.ru/patents/google/US8645367B1/">Как Google использует структуру URL для прогнозирования качества, популярности и поведения пользователей для новых страниц</a> <div class="text">Google анализирует исторические данные о поведении пользователей (например, долгие клики) и атрибуты документов, агрегируя их по схожим шаблонам URL. Если страница новая и не имеет собственных данных, система прогнозирует ее ценность, основываясь на показателях других страниц с аналогичной структурой URL. Это влияет на приоритеты сканирования, индексирования и начальное ранжирование.</div> </div> <div class="bottom-box"> <ul class="info"> <li>US8645367B1</li><li> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="1.25" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-calendar-clock-icon lucide-calendar-clock"><path d="M16 14v2.2l1.6 1"></path><path d="M16 2v4"></path><path d="M21 7.5V6a2 2 0 0 0-2-2H5a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h3.5"></path><path d="M3 10h5"></path><path d="M8 2v4"></path><circle cx="16" cy="16" r="6"></circle></svg> 2010-03-08</li> </ul> <ul class="options-list"> <li><p>Структура сайта</p></li> <li><p>Техническое SEO</p></li> <li><p>Индексация</p></li> </ul> </div> </div> </div> </div> </div> <div class="listing-single"> <div class="listing-block-five"> <div class="image-box"> <div class="se-icon"><img src="/static/img/google-logo-png-29534.png" alt=""></div></div> <div class="inner-box"> <div class="image-box"> </div> <div class="content-box"> <div class="upper-box"> <a class="pat-listing-item-headlink" href="https://seohardcore.ru/patents/google/US8600993B1/">Как Google автоматически определяет язык, страну и тип устройства по структуре URL и переранжирует выдачу под пользователя</a> <div class="text">Google анализирует шаблоны в структуре URL сайта (например, поддомены или папки) и сопоставляет их с фактическим контентом страниц. Система вычисляет вероятность того, что определенный шаблон указывает на язык, страну или тип устройства. При поиске эти данные используются для расчета оценки соответствия (Alignment Score) и повышения в ранжировании той версии страницы, которая лучше всего подходит пользователю, при одновременном понижении дубликатов.</div> </div> <div class="bottom-box"> <ul class="info"> <li>US8600993B1</li><li> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="1.25" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-calendar-clock-icon lucide-calendar-clock"><path d="M16 14v2.2l1.6 1"></path><path d="M16 2v4"></path><path d="M21 7.5V6a2 2 0 0 0-2-2H5a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h3.5"></path><path d="M3 10h5"></path><path d="M8 2v4"></path><circle cx="16" cy="16" r="6"></circle></svg> 2009-08-26</li> </ul> <ul class="options-list"> <li><p>Структура сайта</p></li> <li><p>Персонализация</p></li> <li><p>Техническое SEO</p></li> </ul> </div> </div> </div> </div> </div> <nav class="ls-pagination" aria-label="Пагинация"> <ul> <li class="prev disabled" aria-disabled="true"><a href="#" tabindex="-1"><i class="flaticon-left"></i></a></li> <li><a href="https://seohardcore.ru/patents/google/site-structure/" class="current-page" aria-current="page">1</a></li> <li><a href="https://seohardcore.ru/patents/google/site-structure/page-2/">2</a></li> <li class="next"><a href="https://seohardcore.ru/patents/google/site-structure/page-2/" rel="next" aria-label="Следующая"><i class="flaticon-right"></i></a></li> </ul> </nav> </div> </div> </div> <!-- Main Footer --> <footer class="main-footer style-two"> <!-- Footer Bottom --> <div class="footer-bottom"> <div class="text"><a class="tglink" target="_blank" href="https://t.me/seohardcore"><svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-telegram" viewBox="0 0 16 16"> <path d="M16 8A8 8 0 1 1 0 8a8 8 0 0 1 16 0M8.287 5.906q-1.168.486-4.666 2.01-.567.225-.595.442c-.03.243.275.339.69.47l.175.055c.408.133.958.288 1.243.294q.39.01.868-.32 3.269-2.206 3.374-2.23c.05-.012.12-.026.166.016s.042.12.037.141c-.03.129-1.227 1.241-1.846 1.817-.193.18-.33.307-.358.336a8 8 0 0 1-.188.186c-.38.366-.664.64.015 1.088.327.216.589.393.85.571.284.194.568.387.936.629q.14.092.27.187c.331.236.63.448.997.414.214-.02.435-.22.547-.82.265-1.417.786-4.486.906-5.751a1.4 1.4 0 0 0-.013-.315.34.34 0 0 0-.114-.217.53.53 0 0 0-.31-.093c-.3.005-.763.166-2.984 1.09"></path> </svg> seohardcore</a></div> </div> <!-- Scroll To Top --> <div class="scroll-to-top scroll-to-target" data-target="html"><span class="flaticon-up"></span></div> </footer> <!-- End Footer --> </div><!-- End Page Wrapper --> <script src="/js/jquery.js?v=1.04"></script> <!-- <script src="/js/popper.min.js?v=1.04"></script> <script src="/js/chosen.min.js?v=1.04"></script> --> <script src="/js/bootstrap.min.js?v=1.04"></script> <script src="/js/jquery-ui.min.js?v=1.04"></script> <script src="/js/jquery.fancybox.js?v=1.04"></script> <script src="/js/jquery.modal.min.js?v=1.04"></script> <script src="/js/jquery.hideseek.min.js?v=1.04"></script> <script src="/js/mmenu.polyfills.js?v=1.04"></script> <script src="/js/mmenu.js?v=1.04"></script> <script src="/js/appear.js?v=1.04"></script> <script src="/js/wow.js?v=1.04"></script> <script src="/js/script.js?v=1.04"></script> <!-- <script src="/js/listing-nav-sticky.js" defer></script> --> <script src="/js/back-ignoring-hash.js" defer></script> <script src="/js/patents-readmore.js" defer></script> </body> </html>