Патент Google, описывающий фундаментальный механизм Universal Search. Система определяет, когда запрос связан со специализированной вертикалью (например, ТВ-программы), используя систему триггеров (ключевые слова, белые и черные списки). Затем она одновременно запрашивает …
Семантика и интент
Google использует механизм для улучшения выдачи по широким (категориальным) запросам. Если система определяет, что пользователь ищет информацию по категории, она продвигает в топ наиболее популярные и авторитетные сайты этой категории. …
Google анализирует поведение пользователей (клики по результатам поиска), чтобы определить, означают ли разные фразы одно и то же, когда они связаны с одним типом сущности (например, «достопримечательности в <Город>» против …
Патент Google описывает два ключевых механизма. Первый — автоматическое расширение набора запросов (триггеров), активирующих структурированные карточки, с помощью графового анализа и передачи весов между запросами и сущностями. Второй — процесс …
Google использует специализированные AI-модели для разбивки сложных запросов (задач) на подзадачи. Система отслеживает, с какими подзадачами взаимодействует пользователь, и динамически обновляет выдачу, подгружая больше релевантного контента для этой подзадачи прямо …
Google патентует механизм, позволяющий пользователям взаимодействовать с конкретным результатом поиска через интерфейс чата (prompt input interface) прямо на странице выдачи. Искусственный интеллект анализирует запрос пользователя и его последующий промпт, определяет …
Google определяет, когда показывать блок с ответом (Answer Box) или вертикальную интеграцию (погода, акции и т.д.), анализируя не только текст запроса, но и состав органической выдачи. Если в результатах присутствуют …
Патент Google, описывающий трехэтапный алгоритм для идентификации "выдающихся личностей" (экспертов) в темах, интересующих пользователя. Система анализирует контент, социальные взаимодействия между экспертами (кто на кого ссылается) и расширяет охват на связанные …
Google анализирует исторические данные о том, как пользователи ищут конкретный факт. Если они часто используют естественный язык (например, «какая высота у Эйфелевой башни»), система считает, что пользователи действительно ищут этот …
Google использует модель машинного обучения для определения того, какой тип контента (Новости, Картинки, Товары, Веб-страницы) пользователь хочет видеть в ответ на запрос. Модель анализирует запрос, контекст пользователя и исторические данные …
Google использует систему анализа затрат и выгод, чтобы решить, стоит ли генерировать данные временных рядов (графики, исторические данные) в выдаче. Система оценивает вычислительные затраты (нагрузка на сервер, задержка) и сравнивает …
Google использует механизм "псевдо-рендеринга" для анализа геометрической структуры веб-страницы и ее разделения на семантически различные области (чанки), такие как основное содержимое, навигация, футер и реклама. Это позволяет системе определять важность …
Google анализирует последовательности действий пользователей ("Action Trails"), чтобы выявить общие "Задачи" (например, планирование отпуска). Система кластеризует эти данные и определяет ключевые темы и лучшие ресурсы для каждого этапа задачи на …
Google использует метод для точного определения основного объекта (Сущности) веб-страницы, когда заголовок (Title) содержит лишнюю информацию (брендинг, рубрики). Система анализирует заголовки похожих страниц на том же сайте (Peer Documents) и …
Google не использует единую модель ранжирования. Система использует машинное обучение для создания множества специализированных моделей (Predicted Performance Functions), обученных на исторических данных о кликах для разных контекстов (Search Contexts). При …
Google использует гибридный подход для классификации контента в детальные иерархические категории. Система анализирует, какие запросы (N-граммы) приводят пользователей к кликам на контент из определенных категорий. Эти запросы становятся «подтверждающими» (Supporters) …
Google использует механизм для визуального исследования результатов поиска (например, по картинкам). Система определяет запросы, связанные с исходным, и размещает их результаты в виде "панелей" вокруг центрального результата. Пользователь может перемещаться …
Google анализирует журналы запросов, чтобы определить, как пользователи чаще всего уточняют широкие запросы. Система кластеризирует эти уточнения по темам (например, «кухня», «местоположение»), определяет наиболее разнообразную тему уточнения и предлагает пользователю …
Google анализирует агрегированные данные о взаимодействиях пользователей с физическими локациями (поисковые запросы, запросы маршрутов, данные GPS, чекины). Система сравнивает активность в конкретном месте с активностью в аналогичных местах («Peer Groups») …
Google определяет, когда неоднозначный запрос (например, "высота Эвереста") на самом деле ищет конкретный ответ. Система сопоставляет запрос с историческими шаблонами поиска (Query Templates). Если этот шаблон связан с явным, валидированным …