SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Семантика и интент в Google: разборы патентов

Детальные разборы патентов Google, связанные с семантикой, поисковыми запросами и интентами
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google анализирует цепочки запросов для создания структурированного контекста и передает его рекламодателям через URL клика
Google анализирует последовательные поисковые запросы пользователя (например, «Футболки», затем «маленький размер»), чтобы понять полный интент, и формирует «Структурированный Запрос». Когда пользователь кликает на рекламу, этот обогащенный контекст («тип: футболка, размер: маленький») встраивается в URL и передается рекламодателю. Это позволяет рекламодателю направить пользователя на наиболее релевантную целевую страницу (deep linking).
  • US9582537B1
  • 2014-08-21
  • Семантика и интент

  • Поведенческие сигналы

Как Google использует историю навигации и клики по рекламе для генерации ключевых слов, гео-таргетинга и выявления MFA-сайтов
Патент Google, описывающий три механизма, основанных на анализе поведения пользователей (selection data). Система использует путь навигации пользователя для генерации новых ключевых слов для рекламы, улучшает гео-таргетинг объявлений на основе предпочтений пользователей, а также выявляет низкокачественные сайты (MFA/манипулятивные) по аномально высокому CTR рекламных блоков.
  • US8005716B1
  • 2004-06-30
  • Поведенческие сигналы

  • Семантика и интент

  • Антиспам

Как Google использует контекст и анализ офлайн-поведения (Read Ranking) для соединения физических документов с цифровыми копиями
Система идентифицирует цифровой контент по сканированному фрагменту из физического мира, используя не только текст, но и обширный контекст (время, местоположение, историю пользователя). Патент также вводит концепцию «Read Ranking» — отслеживание популярности физических документов на основе того, что люди сканируют, как потенциальный сигнал ранжирования.
  • US20110295842A1
  • 2011-07-22
  • Поведенческие сигналы

  • Персонализация

  • Семантика и интент

Как Google использует данные о кликах и пропусках для валидации и удаления неэффективных синонимов в поиске
Google постоянно тестирует правила подстановки (синонимы) для расширения запросов. Этот патент описывает механизм оценки эффективности этих правил с помощью анализа поведения пользователей (клики и пропуски результатов). Если пользователи часто пропускают результаты, содержащие подставленный термин, система автоматически удаляет это правило, очищая понимание запросов от нерелевантных синонимов.
  • US8965875B1
  • 2012-04-10
  • Поведенческие сигналы

  • Семантика и интент

  • EEAT и качество

Как Google предугадывает ваш следующий запрос и заранее показывает его результаты в текущей выдаче
Google анализирует агрегированную историю поисковых сессий, чтобы предсказать, какой запрос пользователь введет следующим. Система может выполнить этот предполагаемый запрос (Inferred Action) заранее и встроить его результаты непосредственно в текущую страницу выдачи. Этот механизм часто активируется при показе персональных данных или Панелей знаний и учитывает контекст (время, сезон) и интересы пользователя.
  • US20170116284A1
  • 2013-12-30
  • Семантика и интент

  • Персонализация

  • SERP

Как Google находит фактические ответы, начиная с потенциальных ответов и связывая их с запросами пользователей (Reverse Question Answering)
Google использует метод «обратного ответа на вопрос» для эффективного поиска фактов. Вместо глубокого анализа запроса система начинает с идентификации потенциальных ответов (например, дат, измерений) в индексе. Затем она определяет, для каких запросов эти ответы релевантны, анализируя, какие документы высоко ранжируются и получают клики по этим запросам. Это позволяет точно сопоставлять факты с разнообразными формулировками вопросов.
  • US9116996B1
  • 2012-07-24
  • Поведенческие сигналы

  • Семантика и интент

Как Google использует клики пользователей в Поиске по Картинкам для определения реального содержания изображений
Google использует данные о поведении пользователей для автоматической идентификации содержания изображений. Если пользователи вводят определенный запрос (Идею) и массово кликают на конкретное изображение в результатах поиска, система ассоциирует это изображение с Концептом, производным от запроса. Это позволяет Google понимать, что изображено на картинке, не полагаясь исключительно на метаданные или сложный визуальный анализ, и улучшает релевантность ранжирования в Image Search.
  • US8065611B1
  • 2004-06-30
  • Поведенческие сигналы

  • Семантика и интент

  • Мультимедиа

Как Google фильтрует персонализированные предложения запросов на основе контента просматриваемой страницы
Google использует механизм для генерации предложений следующего запроса после того, как пользователь покинул страницу выдачи. Система создает кандидатов на основе истории поиска пользователя, а затем фильтрует их, проверяя релевантность контенту страницы, которую пользователь просматривает в данный момент. Это гарантирует, что предложения соответствуют как интересам пользователя, так и текущему контексту просмотра.
  • US8392435B1
  • 2010-07-06
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует статистический анализ логов запросов и объема торгов для классификации финансового интента и показа биржевых сводок
Google анализирует вероятность того, что запрос является запросом информации об акциях, даже если он введен в поле общего поиска. Система сравнивает, как часто термин (тикер) используется в общем контексте (в логах запросов) по сравнению с интересом к соответствующей акции (объем торгов). Это позволяет системе отличать финансовый интент от общего для неоднозначных терминов и отображать специализированные результаты фондового рынка.
  • US9508101B1
  • 2001-09-21
  • Семантика и интент

  • SERP

  • Поведенческие сигналы

Как Google вычисляет важность сущностей внутри документа, используя контекст, ссылки и поведение пользователей, для улучшения ранжирования
Google использует систему для определения относительной важности сущностей (люди, места, даты) внутри документа (книги или веб-страницы) независимо от поискового запроса. Важность рассчитывается на основе того, где сущность упомянута (контекст, структура), насколько точно она определена, ссылаются ли на этот раздел внешние источники и как часто его просматривают пользователи. Эти оценки важности сущностей затем используются как сигнал для ранжирования самого документа в результатах поиска.
  • US7783644B1
  • 2006-12-13
  • Поведенческие сигналы

  • Индексация

  • Семантика и интент

Как Google персонализирует поисковые подсказки (Autocomplete) на основе недавно просмотренного медиаконтента
Google использует информацию о недавно потребленном пользователем медиаконтенте (видео, аудио, книги, игры) для персонализации поисковых подсказок. Система извлекает атрибуты (аспекты) из этого контента, такие как названия, имена актеров или артистов, и повышает в ранжировании те подсказки, которые соответствуют этим атрибутам. Влияние потребления медиа на подсказки зависит от времени, прошедшего с момента просмотра, типа контента и того, делился ли им пользователь.
  • US9268880B2
  • 2013-03-14
  • Персонализация

  • Семантика и интент

  • Мультимедиа

Как Google классифицирует запросы о медиа (фильмы, книги, музыка), используя данные из разных вертикалей поиска и поведенческие сигналы
Google использует многофакторную модель для определения, относится ли запрос к медиа-контенту (фильмам, книгам, музыке). Система анализирует результаты товарного поиска, предлагаемые подсказки (candidate queries), частоту запроса в специализированных вертикалях (Search Probability Ratio) и наличие специфичных ключевых слов. Это позволяет точнее определить интент пользователя и показать релевантные специализированные блоки или товарные предложения.
  • US8768910B1
  • 2012-04-13
  • Семантика и интент

  • Поведенческие сигналы

  • Мультимедиа

Как Google выявляет темы с недостаточным контентом ("content gaps") и стимулирует его создание
Google использует систему для анализа поисковой статистики, чтобы найти популярные темы, по которым мало качественных результатов ("underserved topics"). Система сравнивает спрос (объем запросов) с предложением (качеством существующего контента). Затем Google может передавать эту информацию создателям контента (издателям, пользователям), чтобы стимулировать создание нового контента, улучшая общее качество веб-корпуса и поисковой выдачи.
  • US7668823B2
  • 2007-04-03
  • EEAT и качество

  • Семантика и интент

Как Google использует клики и пропуски (skips) для определения, какие слова в запросе можно игнорировать
Google тестирует правила, которые делают определенные слова в запросе необязательными (опциональными), чтобы найти более релевантные результаты. Патент описывает, как система оценивает эффективность этих правил, анализируя поведение пользователей. Если пользователи кликают на результаты, найденные благодаря игнорированию слова, правило считается успешным. Если пропускают (skip) такие результаты, правило может быть удалено.
  • US9141672B1
  • 2012-12-27
  • Поведенческие сигналы

  • Семантика и интент

  • SERP

Как Google использует связанные запросы и временный «бустинг» для обнаружения и тестирования релевантных документов, которые ранжируются низко
Патент описывает механизм улучшения поиска путем перемещения документов на более высокие позиции. Google идентифицирует документы, которые высоко ранжируются по связанным запросам (например, с синонимами, уточнениями или исправленными ошибками), но низко по исходному запросу, и повышает их. Цель — протестировать истинную релевантность этих документов и собрать пользовательский отклик (клики) для улучшения будущего ранжирования.
  • US8521725B1
  • 2003-12-03
  • Поведенческие сигналы

  • SERP

  • Семантика и интент

Как Google использует всплески поисковых запросов для идентификации трендовых «моментов» в ТВ-трансляциях и прямых эфирах
Google анализирует всплески поисковых запросов в реальном времени и сопоставляет их с транслируемым медиаконтентом (например, телешоу или спортивными событиями). Сопоставляя термины запроса с метаданными (субтитрами) или анализируя аудио-отпечатки с устройств пользователей, Google определяет точный «момент», вызвавший интерес, и упаковывает его в автоматический «Гид по моментам».
  • US20170214954A1
  • 2016-01-25
  • Поведенческие сигналы

  • Мультимедиа

  • Семантика и интент

Как Google использует генеративные ИИ-модели (Seq2Seq) и Actor-Critic для динамического переписывания и верификации запросов на основе задач пользователя
Google использует генеративные нейросетевые модели (Sequence-to-Sequence) для динамического создания вариантов поисковых запросов. Система учитывает контекст и предполагаемую задачу пользователя для генерации уточнений или эквивалентных формулировок. Механизм Actor-Critic (обучение с подкреплением) контролирует этот процесс, итеративно улучшая понимание интента и проверяя точность ответов перед их показом.
  • US11663201B2
  • 2018-04-27
  • Семантика и интент

  • Персонализация

  • EEAT и качество

Как Google использует данные о закладках, сообществах и поведении пользователей для персонализации и контекстуализации поиска
Патент описывает раннюю систему персонализации поиска, которая собирает и анализирует закладки (content pointers) пользователей и групп, организованные в иерархические категории. Эта информация используется для создания профилей интересов (content vectors), которые затем применяются для дополнения поисковых запросов (query augmentation) и переранжирования результатов (contextualization) с учетом личного контекста, интересов сообщества и недавней активности пользователя.
  • US7031961B2
  • 2000-12-04
  • Персонализация

  • Поведенческие сигналы

  • Семантика и интент

Как Google использует поведенческие сигналы и контекст событий для обучения моделей целостному пониманию изображений
Google использует анализ естественного языка (например, из Google Assistant) для определения значимых событий. Система анализирует поведенческие сигналы (время просмотра, редактирование, шеринг) и контент изображений, сделанных в этот период, чтобы автоматически аннотировать релевантные фотографии. Эти данные критически важны для обучения моделей машинного обучения целостному (holistic) пониманию контекста и тематики изображений, выходя за рамки простого распознавания объектов.
  • US11836183B2
  • 2023-01-05
  • Поведенческие сигналы

  • Семантика и интент

  • Мультимедиа

Как Google автоматизирует создание структуры категорий и оптимизирует мерчандайзинг на сайтах E-commerce
Система для автоматической организации интернет-магазинов. Она анализирует товарный фид, используя NLP для создания релевантных категорий. Затем система сортирует товары внутри категорий, применяя алгоритмы оптимизации (Decision Trees), основанные на данных о продажах (конверсии, отказы) и внешних поисковых трендах, для максимизации эффективности сайта мерчанта.
  • US20170116658A1 (Патентная заявка)
  • 2015-10-22
  • Семантика и интент

  • Структура сайта

  • Поведенческие сигналы

Как Google использует анализ сессий и CTR для переписывания низкоэффективных запросов в высокоэффективные
Google анализирует поведение пользователей внутри поисковых сессий. Если пользователь быстро переходит от запроса с низким CTR (низкоэффективный) к запросу с высоким CTR (высокоэффективный), система связывает их как относящиеся к одному интенту. В дальнейшем, при получении низкоэффективного запроса, Google использует связанный высокоэффективный запрос для поиска и подмешивания более релевантного контента.
  • US8234265B1
  • 2009-11-18
  • Семантика и интент

  • Поведенческие сигналы

  • SERP

Как Google генерирует поисковые подсказки, анализируя метаданные (Title и Description) авторитетных сайтов и проверяя их грамматику
Google расширяет поисковые подсказки (Autocomplete) за пределы исторических логов, анализируя метаданные документов, такие как заголовки (Title). Система извлекает фразы, проверяет их грамматическую корректность с помощью NLP (POS-tagging) и добавляет в базу подсказок. Приоритет отдается фразам, полученным с авторитетных страниц (высокий Document Score), что позволяет предлагать качественные запросы, даже если их еще никто не искал.
  • US9195706B1
  • 2013-03-01
  • Семантика и интент

  • EEAT и качество

  • Индексация

Как Google использует консенсус источников для выбора и валидации фактов в Knowledge Graph и прямых ответах
Система Google для выбора наилучшего ответа на фактические запросы. Она оценивает потенциальные ответы из разных источников и вычисляет «Оценку Поддержки» (Supported Score) на основе их согласованности. Факт отображается, только если он значительно превосходит противоречащие и несвязанные данные, обеспечивая высокую точность ответа.
  • US7953720B1
  • 2005-03-31
  • Knowledge Graph

  • EEAT и качество

  • Семантика и интент

Как Google предлагает контекстные уточнения запроса на основе взаимодействия пользователя с текстом в строке поиска
Google использует механизм для предложения уточнений запроса, основанный на том, с какой частью (токеном) исходного запроса взаимодействует пользователь в строке поиска. Когда пользователь выделяет или кликает на слово, система определяет контекст и предлагает релевантные замены именно для этой части, используя алгоритм "голосования по перекрытиям" и сортировку по качеству/популярности для выбора лучших вариантов.
  • US7917528B1
  • 2007-04-02
  • Семантика и интент

  • SERP

  • Поведенческие сигналы

Как Google предсказывает запросы в Картах до того, как пользователь открыл приложение или ввел запрос
Google использует машинное обучение для анализа местоположения, скорости движения и истории пользователя, чтобы предсказать, когда он откроет приложение Карт и что будет искать. Это позволяет системе заранее подготовить релевантные ссылки на маршруты и показать их мгновенно при запуске приложения, обеспечивая нулевую задержку.
  • US12141136B2
  • 2019-12-05
  • Персонализация

  • Семантика и интент

  • Поведенческие сигналы

Как Google использует тематические списки предпочтительных и нежелательных сайтов (Editorial Opinion) для корректировки ранжирования
Google может заранее определять "Темы запросов" (Query Themes) и назначать для них списки "Предпочтительных" (Favored) и "Нежелательных" (Non-Favored) источников. Если запрос пользователя соответствует теме, система корректирует ранжирование: повышает предпочтительные источники и понижает нежелательные, используя "Параметр редакторского мнения" (Editorial Opinion Parameter).
  • US7096214B1
  • 2000-12-13
  • EEAT и качество

  • Антиспам

  • SERP

Как Google использует паттерны просмотра пользователей (co-visitation) для определения связанности документов и улучшения поиска
Google использует систему для определения того, насколько тесно связаны два документа, основываясь на агрегированных данных о поведении пользователей. Система рассчитывает вероятность того, что пользователь просмотрит Документ B в течение определенного времени после того, как Документ А был показан ему в результатах поиска. Эти данные используются для персонализации выдачи, предложения рекомендаций и улучшения релевантности на основе контекста сессии пользователя.
  • US8447760B1
  • 2009-07-20
  • Поведенческие сигналы

  • Персонализация

  • Семантика и интент

Как Google использует «Решающие Клики» и «Решающие Пропуски» для валидации и очистки правил синонимов
Патент Google описывает механизм валидации качества внутренних правил синонимов. Система анализирует логи запросов, чтобы изолировать влияние конкретного синонима на поведение пользователя. Если пользователь кликает на результат, содержащий ТОЛЬКО синоним (а не исходный термин), это засчитывается как «Решающий Клик». Если пропускает такой результат — как «Решающий Пропуск». На основе этих данных система вычисляет оценку уверенности для правила и удаляет неэффективные синонимы.
  • US8965882B1
  • 2011-11-22
  • Семантика и интент

  • Поведенческие сигналы

  • SERP

Как Google использует обучение с подкреплением (Reinforcement Learning) для оптимизации ранжирования и переписывания запросов на основе успешности поисковых сессий
Google использует систему Reinforcement Learning для динамической адаптации поисковых процессов. Система анализирует поисковые сессии (последовательности запросов и кликов) и учится оптимизировать выдачу, чтобы пользователь быстрее находил нужный результат. Это достигается путем корректировки весов факторов ранжирования, переписывания запросов или даже обновления индекса на лету для конкретных ситуаций.
  • US11157488B2
  • 2017-12-13
  • Индексация

  • Поведенческие сигналы

  • Семантика и интент

Как Google использует анализ затрат и выгод, чтобы решить, когда показывать графики временных рядов в результатах поиска
Google не всегда генерирует графики и таблицы данных (временные ряды) в ответ на запрос. Система сначала оценивает затраты на сбор и обработку этих данных (нагрузка на сервер, задержка) и сравнивает их с ожидаемой выгодой для пользователя (вероятность клика, качество данных). Визуализация генерируется, только если выгода превышает затраты.
  • US8326836B1
  • 2010-07-13
  • SERP

  • Семантика и интент

  • Поведенческие сигналы

  • 1
  • …
  • 4
  • 5
  • 6
  • 7
  • 8
  • …
  • 21
seohardcore