SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Семантика и интент в Google: разборы патентов

Детальные разборы патентов Google, связанные с семантикой, поисковыми запросами и интентами
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google (YouTube) анализирует трафик конкурирующих видео для рекомендации улучшений метаданных
Google использует систему для анализа конкуренции между видео на основе общих поисковых запросов и времени просмотра. Система выявляет поисковые запросы, которые приводят трафик на конкурирующие (например, производные) видео, и сравнивает их с метаданными оригинального видео. Если обнаруживаются релевантные термины, отсутствующие у оригинала, они рекомендуются автору для улучшения видимости.
  • US10318581B2
  • 2016-04-13
  • Поведенческие сигналы

  • Мультимедиа

  • Семантика и интент

Как Google использует персональное дерево интересов пользователя для определения важности слов в запросе и его переписывания
Google использует иерархический профиль интересов пользователя (Profile Tree), построенный на основе истории поиска и поведения, чтобы определить, какие слова в запросе наиболее важны для конкретного человека. Специфичные интересы (глубокие узлы в дереве) получают больший вес. Это позволяет системе отфильтровать шум в длинных запросах и сгенерировать более точный альтернативный запрос.
  • US8326861B1
  • 2010-06-23
  • Персонализация

  • Семантика и интент

  • Поведенческие сигналы

Как Google определяет, когда показывать обогащенный результат для сущности, и использует консенсус веба для исправления данных
Google использует механизм для определения того, когда запрос явно относится к конкретной сущности (например, книге). Если один результат значительно доминирует над другими по релевантности, система активирует «обогащенный результат». Этот результат агрегирует данные из разных источников (структурированные данные, веб-страницы, каталоги товаров) и использует наиболее популярные варианты данных из интернета для проверки и исправления информации о сущности.
  • US8577897B2
  • 2011-10-26
  • SERP

  • Семантика и интент

  • EEAT и качество

Как Google использует данные из Local Search и Google Maps для распознавания географических названий в основном поиске
Google анализирует поведение пользователей в интерфейсах с отдельными полями ввода "Что?" и "Где?" (например, в Google Maps). На основе этой статистики система определяет, является ли термин однозначным названием местоположения ("Нью-Йорк") или нет ("Пицца"). Это позволяет поиску отличать локальные запросы от общих и формировать "черные списки" для терминов, которые похожи на города, но ими не являются (например, "Орландо Блум").
  • US8782030B1
  • 2007-04-20
  • Local SEO

  • Семантика и интент

  • Поведенческие сигналы

Как Google решает, показывать ли промежуточную страницу (превью) или направлять пользователя сразу на сайт при клике в Поиске по картинкам
Google анализирует, насколько хорошо веб-страница представляет выбранное изображение («image-centricity»). Если изображение на странице качественное, заметное и удовлетворяет интент пользователя (на основе статических и поведенческих данных), Google направляет трафик из Поиска по картинкам напрямую на сайт. В противном случае, Google показывает промежуточный экран (Image Overlay).
  • US9135317B2
  • 2013-03-15
  • Поведенческие сигналы

  • Мультимедиа

  • Семантика и интент

Как Google анализирует сессии пользователей и кластеризует концепции для генерации блока "Связанные запросы" (Related Searches)
Google анализирует последовательности запросов пользователей в рамках одной сессии для выявления шаблонов уточнений. Система кластеризует эти уточнения по смыслу, анализируя контент ранжирующихся по ним документов или другие запросы, ведущие на эти документы. Это позволяет предлагать пользователям концептуально различные варианты для сужения или изменения темы поиска.
  • US8065316B1
  • 2004-09-30
  • Семантика и интент

  • SERP

  • Поведенческие сигналы

Как Google сегментирует сложные запросы на смысловые компоненты для генерации поисковых подсказок и связанных запросов
Google использует механизм для генерации уточнений запроса (поисковых подсказок или связанных запросов) путем разделения исходного запроса на семантические компоненты (устойчивые фразы) с помощью вероятностного анализа. Система находит уточнения для каждого компонента по отдельности, а затем рекомбинирует их, сохраняя исходный порядок. Финальные кандидаты строго фильтруются на основе пользовательских данных (CTR) и синтаксической схожести.
  • US9703871B1
  • 2010-07-30
  • Семантика и интент

  • SERP

  • Поведенческие сигналы

Как Google использует модель D-Q-D и поведение пользователей для предложения разнообразных запросов, связанных с конкретными результатами поиска
Google использует модель "Документ-Запрос-Документ" (D-Q-D), построенную на основе данных о поведении пользователей (клики, время просмотра), для генерации связанных поисковых подсказок. Система предлагает альтернативные запросы, привязанные к конкретному результату, только если эти запросы ведут к новому, разнообразному набору документов, облегчая исследование смежных тем.
  • US8583675B1
  • 2010-08-30
  • Поведенческие сигналы

  • SERP

  • Семантика и интент

Как Google персонализирует подсказки Autocomplete, анализируя запросы похожих пользователей и обновляя локальный кэш устройства
Google персонализирует подсказки Autocomplete (Search Suggest), анализируя поведение пользователей со схожими профилями (местоположение, интересы, история поиска). Система генерирует кастомизированное обновление для локального кэша устройства на основе запросов, введенных этими похожими пользователями. Это означает, что разные пользователи видят разные подсказки для одного и того же ввода.
  • US8868592B1
  • 2012-05-18
  • Персонализация

  • Поведенческие сигналы

  • Local SEO

Как Google ранжирует сущности (книги, фильмы, людей), анализируя тематичность и авторитетность их упоминаний в вебе
Google использует механизм для оценки значимости конкретных сущностей (например, изданий книг или фильмов). Система анализирует, как эти сущности упоминаются на релевантных веб-страницах, учитывая уверенность распознавания (Confidence) и то, насколько страница посвящена именно этой сущности (Topicality). Эти сигналы агрегируются с учетом авторитетности и релевантности страниц для расчета итоговой оценки сущности, которая затем корректирует ее ранжирование в поиске.
  • US20150161127A1
  • 2013-02-13
  • Семантика и интент

  • EEAT и качество

  • SERP

Как Google использует машинное обучение для оптимизации обхода Knowledge Graph и поиска связанных концепций
Google оптимизирует обход Knowledge Graph для эффективного поиска семантически связанных фраз. Вместо анализа всех связей сущности система использует ML-модели для выбора только тех отношений (свойств), которые вероятнее всего приведут к ценным результатам. Этот выбор основан на истории поисковых запросов и контексте пользователя, что позволяет экономить вычислительные ресурсы и повышать релевантность предложений.
  • US10140286B2
  • 2017-02-22
  • Knowledge Graph

  • Семантика и интент

  • Персонализация

Как Google использует последовательность кликов пользователей (Co-selection) для классификации изображений и фильтрации контента (SafeSearch)
Google анализирует, какие изображения пользователи выбирают последовательно в рамках одной сессии (co-selection). Если Изображение Б часто выбирается сразу после Изображения А (с известной темой), система присваивает Изображению Б ту же тему. Этот механизм использует графовый анализ поведения для уточнения тематики изображений, что критично для повышения релевантности и работы фильтров, таких как SafeSearch.
  • US8856124B2
  • 2009-06-03
  • Безопасный поиск

  • Поведенческие сигналы

  • Семантика и интент

Как Google использует контекст пользователя для генерации неявных поисковых запросов и проактивного показа результатов
Система Google отслеживает контекст пользователя в реальном времени (набираемый текст, открытые документы, письма). На основе этого контекста автоматически генерируются множественные неявные запросы. Система объединяет результаты из разных источников (локальных и глобальных) и проактивно показывает их пользователю, используя поведенческие данные (клики) для улучшения релевантности.
  • US7664734B2
  • 2004-03-31
  • Поведенческие сигналы

  • Персонализация

  • Семантика и интент

Как Google использует историю кликов для автоматического переписывания запросов и ограничения поиска по конкретным сайтам или сущностям
Google анализирует агрегированные данные о поведении пользователей (Query Logs), чтобы определить, когда название бренда или сущности в запросе указывает на намерение искать только на этом сайте. Если пользователи подавляюще кликают на один домен при использовании определенного термина (пиковое распределение кликов), Google автоматически переписывает запрос для ограничения поиска (например, добавляя оператор типа store: или site:). Если намерение неоднозначно, Google предлагает переписанный запрос в виде ссылки.
  • US7996419B2
  • 2004-03-31
  • Семантика и интент

  • Поведенческие сигналы

  • SERP

Как Google использует сущности, качество организатора и интент запроса для ранжирования прямых трансляций в поиске
Google использует систему для идентификации и оценки качества прямых трансляций (live events). Качество определяется на основе репутации организатора и популярности связанных сущностей. При обработке запроса система анализирует интент пользователя и время до начала события. Если трансляция качественная, связана с сущностями в запросе и начнется скоро (порог зависит от интента), она может быть показана в специальном блоке поисковой выдачи.
  • US10621191B2
  • 2015-06-08
  • Семантика и интент

  • SERP

  • EEAT и качество

Как Google ранжирует сущности (например, людей с одинаковыми именами) с помощью кластеризации, контекстной авторитетности и персонализации
Google использует систему двухуровневого ранжирования для обработки неоднозначных запросов (например, имен людей). Сначала ресурсы группируются в кластеры, представляющие разные сущности. Ресурсы внутри кластера ранжируются на основе их качества и авторитетности внутри этого кластера. Затем сами кластеры ранжируются с учетом релевантности запросу и сильной персонализации (социальные связи и местоположение пользователя).
  • US8645393B1
  • 2011-04-15
  • Персонализация

  • Семантика и интент

  • SERP

Как Google выбирает сущность для Панели Знаний и решает, когда ее показывать, основываясь на топикальности SERP и CTR
Google использует этот механизм для решения двух задач: выбора наиболее релевантной сущности для Панели Знаний при неоднозначном запросе и определения необходимости показа самой панели. Система анализирует, насколько сущности соответствуют контенту топовых результатов поиска (Topicality Score). Показ панели активируется, если у органических результатов низкий CTR (что указывает на неудовлетворенность пользователей) или если у Google достаточно данных для ее заполнения.
  • US10922326B2
  • 2013-03-14
  • Knowledge Graph

  • SERP

  • Семантика и интент

Как Google использует данные о поведении пользователей и длительность кликов для улучшения и переписывания поисковых запросов
Google использует систему для автоматического переписывания запросов пользователей. Система анализирует миллионы прошлых поисковых сессий, чтобы определить, как пользователи уточняли свои запросы и насколько они были удовлетворены результатами (измеряя длительность кликов). На основе этого рассчитывается «Ожидаемая полезность» (Expected Utility) для предложенных вариантов запросов, что позволяет Google предлагать пользователю те формулировки, которые с наибольшей вероятностью приведут к качественному ответу.
  • US7617205B2
  • 2005-03-30
  • Поведенческие сигналы

  • Семантика и интент

  • SERP

Как Google выбирает модель визуальной релевантности для сложных запросов в Поиске по картинкам
Google решает проблему ранжирования изображений для сложных или редких запросов, для которых нет специализированной модели релевантности. Система тестирует существующие модели, созданные для частей запроса (подзапросов), и выбирает ту, которая лучше всего соответствует поведению пользователей (кликам) по исходному запросу. Это позволяет улучшить визуальную релевантность в Image Search.
  • US9152652B2
  • 2013-03-14
  • Поведенческие сигналы

  • Мультимедиа

  • Семантика и интент

Как Google использует историю браузера, закладки и поведение пользователей для персонализации результатов поиска в e-commerce
Система отслеживает поведение пользователей (клики, время на сайте, покупки) и их сохраненные закладки (content pointers) в сетевой среде. На основе этих данных создается персональная модель релевантности и иерархия предпочтений. Эта модель используется для дополнения запросов, переранжирования результатов поиска и предоставления рекомендаций, обеспечивая персонализированный опыт в e-commerce.
  • US7089237B2
  • 2001-01-26
  • Поведенческие сигналы

  • Персонализация

  • SERP

Как Google использует фразы и тематические кластеры из истории пользователя для персонализации результатов поиска
Google может строить модель интересов пользователя, анализируя семантически значимые фразы и тематические кластеры в контенте, который пользователь потребляет (просматривает, сохраняет, печатает). При последующих запросах система повышает в ранжировании те документы, которые содержат фразы, одновременно релевантные запросу и присутствующие в профиле интересов пользователя.
  • US7580929B2
  • 2004-07-26
  • Персонализация

  • Семантика и интент

  • Поведенческие сигналы

Как Google использовал специальные токены в запросе (например, «+») для прямой навигации на верифицированные социальные страницы в обход SERP
Google может интерпретировать специальные токены в поисковом запросе (например, «+») как намерение пользователя найти официальную социальную страницу сущности. Если система идентифицирует верифицированный профиль, соответствующий запросу с высокой степенью уверенности, она может перенаправить пользователя прямо на эту страницу, минуя стандартную поисковую выдачу.
  • US9275421B2
  • 2012-11-01
  • Семантика и интент

  • SERP

  • Ссылки

Как Google определяет локальный интент и предлагает уточнить запрос до его отправки в поиск
Google использует вероятностную модель, основанную на поведении пользователей, чтобы определить, имеет ли вводимый запрос локальный интент. Если вероятность высока, система предлагает пользователю добавить уточняющую информацию (например, местоположение) ещё до того, как запрос будет отправлен в поисковую систему. Это позволяет сразу формировать более точную и локализованную выдачу.
  • US8484190B1
  • 2008-12-18
  • Local SEO

  • Семантика и интент

  • Поведенческие сигналы

Как Google связывает документы на основе поведения пользователей, времени взаимодействия и контентной близости для персонализации поиска
Google использует систему для определения "меры ассоциации" между различными документами (статьями, веб-страницами, письмами). Ассоциация рассчитывается на основе того, насколько близко по времени пользователь взаимодействовал с этими документами, насколько похож их контент и совпадают ли метаданные (например, автор). Эти связи используются для понимания пути пользователя и персонализации последующих результатов поиска.
  • US8131754B1
  • 2004-06-30
  • Поведенческие сигналы

  • Персонализация

  • Семантика и интент

Как Google позволяет пользователям "углубиться" в контент установленного мобильного приложения прямо из веб-выдачи
Google использует этот механизм для интеграции контента из нативных приложений в веб-поиск. Если приложение установлено у пользователя и система определяет высокую релевантность его контента запросу, в выдачу добавляется специальный элемент (например, "Больше результатов из приложения X"). Клик по этому элементу запускает новый поиск, показывая множество deep links только из этого приложения, не покидая интерфейс поиска.
  • US10579687B2
  • 2015-09-01
  • SERP

  • Семантика и интент

  • Ссылки

Как Google запоминает вопросы без авторитетного ответа и автономно сообщает его позже через Ассистента
Патент Google описывает механизм для обработки запросов, на которые в момент поиска нет качественного или авторитетного ответа. Система запоминает информационную потребность и продолжает мониторинг. Когда появляется информация, удовлетворяющая критериям качества (например, в Knowledge Graph), Google автономно доставляет ответ пользователю, часто встраивая его в следующий диалог с Google Assistant, даже если этот диалог не связан с исходным вопросом.
  • US11238116B2
  • 2017-09-29
  • Knowledge Graph

  • Семантика и интент

  • EEAT и качество

Как Google использует матрицы схожести и анализ сессий для генерации предлагаемых поисковых запросов
Google использует систему для предложения альтернативных поисковых запросов, предсказывая следующий шаг пользователя в сессии. Система генерирует варианты путем замены терминов на контекстуально похожие (используя матрицы схожести) или путем расширения/сокращения фраз (используя таблицы соединений). Предложения оцениваются на основе их релевантности контексту сессии и исторической вероятности клика по их результатам.
  • US8438142B2
  • 2005-05-04
  • Семантика и интент

  • Поведенческие сигналы

  • Персонализация

Как Google использует логи запросов, чтобы выбирать лучшие переводы для межъязыковых подсказок в Autocomplete
Google разработал систему для улучшения качества межъязыковых поисковых подсказок (Autocomplete). Вместо буквального перевода система оценивает различные варианты перевода, отдавая предпочтение тем фразам, которые чаще всего используются носителями целевого языка в качестве реальных поисковых запросов. Это гарантирует, что предложенная подсказка является не только точным переводом, но и эффективным поисковым запросом.
  • US20120330990A1
  • 2011-09-29
  • Мультиязычность

  • Семантика и интент

  • Поведенческие сигналы

Как Google использует контекст и историю пользователя для понимания голосовых команд и запуска неявных поисковых запросов
Патент раскрывает методы интерпретации голосового ввода на носимых устройствах. Система анализирует обширный контекст (недавние документы, местоположение, календари), чтобы определить намерение пользователя. Ключевой особенностью является генерация «неявных поисковых запросов» (Implicit Search Requests) автоматически, без прямой команды пользователя, на основе его текущей деятельности.
  • US20130018659A1
  • 2011-11-08
  • Семантика и интент

  • Персонализация

  • Поведенческие сигналы

Как Google использует сторонние сертификаты (VMC) и Schema Markup для подтверждения и приоритетного использования атрибутов сущностей
Google использует сертификаты от сторонних центров сертификации (например, VMC) для подтверждения связи между сущностью (брендом, человеком) и её официальной веб-страницей. Атрибуты, извлеченные из Schema Markup на этой странице, помечаются как «сертифицированные». Эти данные имеют наивысший приоритет в Knowledge Graph и используются для генерации информационных карточек, минуя стандартные процессы проверки и разрешения конфликтов.
  • US12061594B2
  • 2021-02-04
  • Knowledge Graph

  • EEAT и качество

  • Семантика и интент

  • 1
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • …
  • 21
seohardcore