SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Семантика и интент в Google: разборы патентов

Детальные разборы патентов Google, связанные с семантикой, поисковыми запросами и интентами
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google синхронизирует онлайн-новости с телевизионным эфиром, используя кластеризацию статей, TF-IDF и анализ субтитров
Патент описывает технологию Google для "второго экрана", которая идентифицирует просматриваемую телепередачу и в реальном времени находит соответствующие ей онлайн-новости. Система агрегирует новостные статьи, кластеризует их по темам, извлекает ключевые слова (используя TF-IDF) и сопоставляет их с потоком субтитров телеканала. Это демонстрирует механизмы Google по обработке, кластеризации и ранжированию новостного контента по свежести и популярности.
  • US9544650B1
  • 2013-12-11
  • Свежесть контента

  • Мультимедиа

  • Семантика и интент

Как Google связывает всплески поисковых запросов с ТВ-трансляциями для показа контекстной информации в реальном времени
Google отслеживает внезапные всплески частоты поисковых запросов и сопоставляет их с субтитрами (или аудиодорожкой) транслируемых в этот момент телепрограмм. Это позволяет системе понять, какой именно момент в эфире вызвал интерес пользователей, и проактивно предоставить связанную информацию зрителям через «вторые экраны» (например, смартфоны).
  • US9578358B1
  • 2014-07-18
  • Свежесть контента

  • Семантика и интент

  • Персонализация

Как Google использует жесты (Drag-and-Drop) для поиска общих связей между сущностями или изображениями
Google разработал метод поиска, позволяющий пользователям объединять отображаемые объекты (например, изображения людей или продуктов) с помощью жеста, такого как перетаскивание. Система идентифицирует сущности, стоящие за этими объектами, находит их общие атрибуты и автоматически выполняет поиск по этим связям (например, фильмы, в которых снимались оба актера).
  • US9195720B2
  • 2013-03-14
  • Семантика и интент

  • Knowledge Graph

Как Google автоматизирует удаление персональных данных (PII) из поиска и расширяет блокировку на связанные запросы и дубликаты контента
Google использует гибридную систему, сочетающую правила и модели машинного обучения, для автоматизации обработки запросов на удаление контента (например, PII). Система оценивает легитимность запроса, анализируя тип сайта, данные аккаунта пользователя и сам контент. При одобрении запроса Google не только удаляет результат для исходного запроса, но и автоматически расширяет блокировку на семантически близкие запросы и идентифицирует похожие или дублирующиеся веб-документы для их превентивного удаления из выдачи.
  • US12045302B2
  • 2023-02-07
  • Безопасный поиск

  • Семантика и интент

  • Антиспам

Как Google рассчитывает оценки для связанных запросов (Related Searches) на основе частоты терминов и популярности уточнений
Google анализирует логи поисковых сессий, чтобы понять, как пользователи уточняют свои запросы. Система вычисляет, какие термины чаще всего встречаются в этих уточнениях (Term Occurrence Score) и насколько популярен сам путь уточнения (Refinement Rate). На основе этих метрик формируются релевантные поисковые подсказки и блоки «Связанные запросы».
  • US8515985B1
  • 2011-06-24
  • SERP

  • Семантика и интент

Как Google использует графовые нейросети для обнаружения развивающихся событий через анализ социальных сетей и поисковых запросов
Google использует систему для обнаружения развивающихся событий (например, срочных новостей) путем мониторинга потоков данных в реальном времени (социальные сети) и поисковых запросов. Система моделирует распространение информации в виде графа и применяет специализированные модели машинного обучения (например, GCN, GAN) для оценки вероятности события и его релевантности для пользователя, позволяя предоставлять актуальную информацию до ее появления в традиционных источниках.
  • US11366812B2
  • 2019-06-25
  • Свежесть контента

  • Семантика и интент

  • Персонализация

Как Google использует постоянные запросы для агрегации, кастомизации и синдикации новостного контента
Патент описывает архитектуру кастомизации и синдикации новостей (например, Google News). Он объясняет, как новостные разделы определяются с помощью постоянных поисковых запросов (на основе ключевых слов, тем и географии) и как пользователи или внешние сайты могут размещать этот кастомизированный контент, который динамически обновляется основным агрегатором новостей.
  • US8126865B1
  • 2003-12-31
  • Персонализация

  • Семантика и интент

  • Краулинг

Как Google позволяет пользователям переключаться между ключевыми моментами (Хуками) в VOD-контенте на основе анализа видео и внешних сигналов
Google разработал систему для улучшения навигации по VOD-контенту (Video-on-Demand). Вместо просмотра видео с начала, пользователи могут искать конкретные типы сцен («хуки»). Система идентифицирует эти моменты, используя анализ видео (Video Image Recognition) и внешние сигналы (например, популярность клипов в соцсетях), и позволяет переключаться между разными видео, начиная просмотр сразу с этих ключевых сцен (time-shifting).
  • US20180302680A1
  • 2016-12-16
  • Мультимедиа

  • Семантика и интент

Как Google визуально и аудиально сигнализирует об уверенности в подсказках автозаполнения (Auto-Complete)
Google использует систему для улучшения UX при вводе запроса, рассчитывая вероятность того, что подсказка автозаполнения соответствует намерению пользователя. Если вероятность для лучшей подсказки превышает определенный порог, Google может визуально или аудиально выделить ее (например, подсветкой, гистограммой или звуком), чтобы ускорить выбор пользователя.
  • US8412728B1
  • 2011-09-26
  • Семантика и интент

Как Google использует обработку естественного языка для поиска информации в личной истории пользователя (браузер, почта)
Google может распознавать запросы на естественном языке (включая голосовые), которые ищут ранее просмотренный контент (например, «найди рецепт, который я читал на телефоне»). Система ищет ответ не в общем веб-индексе, а в личной истории пользователя (история браузера, электронная почта), используя фильтры по теме, времени или устройству, извлеченные из запроса.
  • US10515076B1
  • 2017-01-31
  • Семантика и интент

  • Персонализация

  • Индексация

Как Google использует тематические векторы, косинусное сходство и анализ когезии кластеров для автоматической классификации контента
Патент Google, описывающий технологию автоматической организации документов. Система создает тематическую сигнатуру документа (вектор тем и их весов) и сравнивает её с существующими наборами документов, используя Cosine Similarity. Затем вычисляется Оценка Уверенности на основе среднего сходства и однородности набора. Патент раскрывает фундаментальные механизмы Information Retrieval, которые Google использует для понимания семантики и оценки тематической когезии контента.
  • US8458194B1
  • 2012-01-31
  • Семантика и интент

Как Google (Chrome) использует адресную строку (Omnibox) для автозаполнения URL и быстрого поиска по сайтам
Патент описывает работу адресной строки браузера (например, Chrome Omnibox). Система анализирует историю посещений, чтобы предлагать автозаполнение URL и отличать навигационные намерения от поисковых запросов. Она также позволяет пользователям искать внутри конкретного сайта (например, Amazon) прямо из адресной строки, используя «Поисковые ярлыки», минуя переход на главную страницу этого сайта.
  • US8438148B1
  • 2009-09-01
  • Семантика и интент

  • Персонализация

Как Google использует анализ видео и аудио для построения графов зависимостей между эпизодами сериализованного контента
Google анализирует медиаконтент (например, эпизоды сериалов или обучающих курсов), чтобы автоматически понять, какие эпизоды связаны между собой. Изучая фрагменты повторов, транскрипты и визуальные элементы (включая распознавание лиц), система строит «Граф Зависимостей». Это позволяет рекомендовать пользователям необходимые для понимания предыдущие эпизоды, улучшая организацию и потребление сериализованного контента.
  • US9558407B1
  • 2014-12-16
  • Мультимедиа

  • Семантика и интент

  • Персонализация

Как Google встраивает интерактивные ответы (OneBox) в контент веб-страниц и сниппеты поисковой выдачи
Патент описывает систему для идентификации ключевых терминов (например, названий компаний, локаций, медиа) на любой веб-странице или в сниппете поисковой выдачи. Система динамически встраивает интерактивные гаджеты (Answer Box Gadgets), предоставляющие пользователю мгновенную информацию (например, текущую цену акции или погоду) по клику или наведению, не требуя покидать страницу.
  • US9146992B2
  • 2012-01-13
  • SERP

  • Семантика и интент

Как Google выбирает лучший перевод для межъязыковых подсказок в автокомплите, сравнивая N-граммы
Google использует этот механизм для улучшения качества межъязыковых поисковых подсказок (автокомплита), особенно для смешанных запросов. Если автоматическое определение языка затруднено, система генерирует два перевода в разных направлениях (Язык A -> Язык B и Язык B -> Язык A). Затем она сравнивает их с оригиналом с помощью N-грамм. Перевод, который максимально отличается от оригинала, выбирается как наилучшая межъязыковая подсказка.
  • US20120330919A1
  • 2011-09-29
  • Мультиязычность

  • Семантика и интент

Как Google организует результаты поиска по картинкам в масштабируемый интерфейс с помощью кластеризации по сходству
Google использует систему для визуализации результатов поиска по картинкам. Изображения группируются на основе визуального и семантического сходства и размещаются в двумерной сетке. При уменьшении масштаба система показывает меньше изображений, выбирая одно репрезентативное для каждого кластера. При увеличении масштаба отображается больше детализированных результатов внутри кластера. Это позволяет пользователям эффективно просматривать большие наборы изображений.
  • US20150170333A1
  • 2011-09-15
  • Мультимедиа

  • SERP

  • Семантика и интент

Как Google оптимизирует скорость и точность векторного поиска (MIPS) с помощью локального ортогонального разложения (LOD)
Патент Google, описывающий инфраструктурный метод повышения точности семантического поиска (Maximum Inner Product Search). Система использует технику Local Orthogonal Decomposition (LOD) для более эффективного сжатия (квантования) векторных эмбеддингов. Это позволяет быстрее и точнее находить документы, семантически схожие с запросом пользователя, улучшая работу систем типа Neural Matching.
  • US11354287B2
  • 2019-12-16
  • Семантика и интент

  • Индексация

Как Google реализует функцию «Выделить и Искать» с интеллектуальным уточнением запроса на стороне клиента
Патент Google описывает клиентскую технологию, позволяющую пользователю выделить любой элемент на экране (текст или изображение) и мгновенно инициировать поиск. Система автоматически обрабатывает выделенное: применяет OCR к изображениям, дополняет частично выделенные слова и добавляет контекстные слова из окружающего контента для уточнения запроса перед его отправкой в поисковую систему.
  • US8838562B1
  • 2004-10-22
  • Семантика и интент

Как Google объединяет контекстные ответы и персональные уведомления с поисковыми подсказками в реальном времени
Google патентует механизм отображения контекстной информации прямо в выпадающем списке поисковых подсказок (Autocomplete). Система объединяет стандартные предсказания запросов с двумя типами данных: персональными уведомлениями (погода, встречи, новости для локации пользователя) и прямыми ответами на вводимый запрос (определения, факты, часы работы). Это ускоряет доступ к информации еще до перехода на страницу результатов поиска.
  • US20150039582A1
  • 2013-08-05
  • Персонализация

  • Семантика и интент

Как Google кэширует данные Knowledge Graph на устройствах пользователей для понимания контекста и помощи в реальном времени
Google создает "срезы" (фиксированные наборы) данных из Knowledge Graph на основе тем и локаций. Система предсказывает, какие срезы наиболее релевантны пользователю, основываясь на его местоположении, контенте на экране и других сигналах, и загружает их на устройство. Это позволяет Google мгновенно распознавать сущности и предлагать помощь (например, через Assistant или Lens) даже без подключения к сети.
  • US10178527B2
  • 2015-12-08
  • Knowledge Graph

  • Семантика и интент

  • Персонализация

Как Google исправляет грамматически некорректные запросы пользователей, изучающих язык, предлагая альтернативы
Патент описывает систему, преимущественно для голосовых ассистентов, которая определяет, что пользователь сформулировал запрос грамматически некорректно («плохо сформированная фраза») на неродном для него языке. Вместо выполнения команды система предлагает корректный вариант («хорошо сформированную фразу»), используя для этого предварительно рассчитанные векторные представления (embeddings) и анализ языковой компетентности пользователя.
  • US12019999B2
  • 2021-06-18
  • Семантика и интент

  • Мультиязычность

Как Google News использует расширяемые блоки (Story Clusters) для агрегации разнообразного контента по одной теме
Патент Google описывает интерфейс для агрегации контента (например, Google News). Система группирует связанные документы в кластеры и представляет их в виде сворачиваемых блоков. В развернутом виде блок показывает разнообразные типы контента (статьи, видео, мнения, контекст) из разных источников, помогая пользователю всесторонне изучить тему.
  • US9678618B1
  • 2012-05-31
  • Мультимедиа

  • Семантика и интент

Как Google использует итеративное автозаполнение для пошагового формирования поисковых запросов
Патент Google описывает механизм интерфейса, позволяющий пользователям строить запросы пошагово (слово за словом). Вместо немедленного поиска, выбор подсказки добавляет её к запросу и генерирует новый набор подсказок для уточнения интента. Это облегчает создание длинных, специфичных запросов, особенно на мобильных устройствах.
  • US8601019B1
  • 2012-04-03
  • Семантика и интент

Как Google определяет, когда показывать пользователю его личные данные (Gmail, Контакты) вместо результатов веб-поиска
Google создает детальную модель пользователя (User Model) на основе его личного контента (письма, контакты, события). При получении запроса система анализирует эту модель, чтобы определить намерение пользователя (Intent Score): ищет ли он свои личные данные или общую информацию в интернете. Это позволяет автоматически активировать персональный поиск только тогда, когда это релевантно контексту и времени.
  • US20150012524A1
  • 2013-07-02
  • Персонализация

  • Семантика и интент

Как Google использует камеру, микрофон и GPS смартфона для понимания контекстуальных запросов типа «Что это?»
Google использует данные с датчиков мобильного устройства (камера, микрофон, GPS) для понимания неоднозначных запросов пользователя, таких как «Что я вижу?» или «Что это за песня?». Система распознает объекты или звуки в окружении пользователя и использует эту информацию для преобразования контекстуального вопроса в конкретный поисковый запрос, обеспечивая релевантные результаты на основе реального мира.
  • US20130311506A1
  • 2012-01-09
  • Семантика и интент

  • Мультимедиа

Как Google предлагает релевантные типы поиска (например, визуальный поиск) в зависимости от местоположения пользователя
Google использует местоположение мобильного устройства для предиктивного предложения наиболее подходящих типов поиска. Например, находясь в музее, система предложит визуальный поиск по произведениям искусства, а в магазине — сканирование штрих-кодов. Это улучшает пользовательский опыт, предлагая нужный инструмент поиска в нужном контексте.
  • US20140156704A1
  • 2013-05-23
  • Local SEO

  • Персонализация

  • Семантика и интент

Как Google оптимизирует анализ экрана (Google Lens/Assistant), запрашивая изображения только тогда, когда текста недостаточно
Google использует двухэтапный процесс для предоставления контекстной информации о том, что отображается на экране устройства (например, в Google Lens или Assistant). Для экономии трафика и ресурсов система сначала анализирует только текст на экране. Только если текста недостаточно для понимания контекста, система запрашивает и анализирует отображаемые изображения.
  • US10802671B2
  • 2016-07-11
  • Семантика и интент

  • Мультимедиа

Как Google анализирует сущности в топе органической выдачи для выбора релевантной рекламы на SERP
Google использует этот механизм для улучшения релевантности рекламы на странице результатов поиска. Система анализирует контент топовых органических результатов, извлекает из них ключевые сущности (концепции, продукты, бренды) и взвешивает их значимость. Затем эти сущности используются для выбора наиболее подходящих рекламных объявлений, позволяя таргетироваться на семантический контекст выдачи, а не только на ключевые слова запроса.
  • US20150199718A1
  • 2014-01-14
  • SERP

  • Семантика и интент

Как Google анализирует мнения и общественное восприятие тем в интернете путем кластеризации контента и измерения тональности
Патент описывает систему для анализа общественного мнения по заданной теме. Google собирает релевантные интернет-ресурсы (статьи, блоги, отзывы), группирует их по подтемам, определяет важность каждой подтемы (используя просмотры страниц и ранг релевантности) и вычисляет оценку тональности (Sentiment Score). На основе этих данных создается аналитический отчет о восприятии продукта, услуги или события.
  • US8423551B1
  • 2010-11-05
  • Семантика и интент

Как Google интерпретирует выделенный пользователем текст в поисковые запросы и отдает предпочтение более длинным формулировкам
Google использует механизм для преобразования контента, выделенного пользователем на экране (например, жестом обводки), в оптимизированный поисковый запрос. Система генерирует несколько кандидатов и оценивает их вероятность. Ключевая особенность — нормализация оценок по длине запроса. Это позволяет системе отдавать предпочтение более длинным и точным запросам, а не коротким и частотным, улучшая релевантность выдачи при использовании функций типа "Circle to Search".
  • US20140188894A1
  • 2012-12-27
  • Семантика и интент

  • 1
  • …
  • 18
  • 19
  • 20
  • 21
seohardcore