SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Семантика и интент в Google: разборы патентов

Детальные разборы патентов Google, связанные с семантикой, поисковыми запросами и интентами
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google находит, объединяет и обогащает связанные таблицы, разбросанные по разным веб-страницам
Google использует механизм для идентификации связанных таблиц ("stitchable tables") на разных веб-страницах. Система проверяет семантическую эквивалентность заголовков, извлекает скрытые атрибуты из окружающего контекста (текст, URL) и объединяет все данные в единую, обогащенную таблицу ("union table") для лучшего понимания структурированных данных в вебе.
  • US9720896B1
  • 2013-12-30
  • Семантика и интент

Как Google определяет, является ли ответ на вопрос «Кто...?» именем человека или названием организации, и переранжирует выдачу
Google использует статистический анализ языка для разрешения неоднозначности в запросах (например, начинающихся с «Кто»). Система анализирует, как часто глагол и объект из запроса встречаются в корпусе текстов с субъектом-человеком по сравнению с субъектом-организацией. На основе этой вероятности Google переранжирует результаты, повышая или понижая позиции сущностей (людей или организаций) в зависимости от того, какой тип ответа ожидается.
  • US9063983B1
  • 2013-03-12
  • Семантика и интент

  • SERP

Как Google извлекает и ранжирует факты, используя сопоставление шаблонов, IDF и консенсус источников
Google использует многоэтапный процесс для ответов на запросы с пропусками (fill-the-blanks). Система преобразует запрос в шаблон, находит совпадения в тексте и извлекает ответ (Filler Text). Ранжирование ответов основано на уникальности терминов (IDF), качестве документа-источника (Document Quality) и частоте подтверждения этого ответа другими источниками (Relative Frequency), что позволяет валидировать факты через консенсус.
  • US7693829B1
  • 2005-04-25
  • Семантика и интент

  • SERP

Как Google использует жесты на экране (например, «Circle to Search») для генерации мультимодальных поисковых запросов
Google использует технологию, позволяющую инициировать поиск жестами (например, обведением объекта на экране). Система анализирует выбранный контент (текст, изображения, видео), извлекает ключевые темы, учитывает контекст страницы и пользователя (местоположение, время), взвешивает эти данные и автоматически формирует релевантный поисковый запрос.
  • US9916396B2
  • 2013-02-19
  • Семантика и интент

  • Мультимедиа

  • Персонализация

Как Google использует визуальные превью (Query Suggestion Groupings) для уточнения поисковых запросов
Google патентует интерфейс "Query Suggestion Groupings", который показывает не только текст предлагаемого уточнения запроса, но и визуальное превью результатов (например, миниатюры изображений). Ключевая особенность: эти превью намеренно исключают результаты из топа основной выдачи, чтобы обеспечить разнообразие. Это позволяет пользователям визуально оценить контекст уточнения, не покидая текущую страницу.
  • US9230023B2
  • 2013-04-16
  • SERP

  • Семантика и интент

Как Google автоматически звонит по телефону или перенаправляет на сайт, минуя страницу результатов поиска
Система Google, которая интерпретирует голосовые или текстовые запросы как команды к действию (например, «Позвони в пиццерию» или «Открой Википедию»). Вместо показа списка результатов система определяет лучший результат и автоматически инициирует звонок или перенаправляет браузер на целевую страницу после короткого обратного отсчета, если пользователь не отменит действие.
  • US8392411B2
  • 2010-08-06
  • Семантика и интент

  • Local SEO

Как Google заложил основу визуального поиска (Google Lens), превращая изображения с камеры в поисковые запросы
Google разработал систему, позволяющую использовать изображения с мобильных устройств в качестве поисковых запросов. Система распознает объекты на изображении (продукты, здания, текст, лица), преобразует их в символьное описание (текстовый запрос) и использует его для поиска релевантной информации в стандартной поисковой системе.
  • US8421872B2
  • 2004-02-20
  • Мультимедиа

  • Семантика и интент

  • Индексация

Как Google создает агрегированные блоки событий (Integrated Event View), объединяя факты, новости и фильтруя социальные сети
Google использует систему для идентификации событий (спорт, концерты) в запросах и генерации «Интегрированного представления события» (Integrated Event View). Эта система агрегирует фактические данные, результаты веб-поиска и контент из социальных сетей. Ключевой особенностью является фильтрация социальных сообщений с использованием семантического сходства (например, LSA) и геолокации для обеспечения релевантности.
  • US20110302153A1
  • 2011-06-03
  • Семантика и интент

Как Google использует анализ контента для распределения пользовательских вопросов на тематически релевантные сайты
Патент описывает систему, функционирующую подобно рекламной сети (типа AdSense), но для Q&A. Google анализирует содержание веб-сайтов (издателей) и пользовательские вопросы для определения тематической релевантности. Затем система размещает релевантные вопросы на этих сайтах, чтобы эксперты, посещающие их, могли дать ответ. Это демонстрирует базовые механизмы Google для определения тематики контента.
  • US20080160490A1
  • 2007-03-22
  • Краулинг

  • Семантика и интент

Как Google использует графы уточнений запросов для бустинга документов и переписывания широких запросов
Google анализирует, как пользователи уточняют свои запросы, и строит «Граф Запросов». Этот граф используется двумя способами: 1) Для повышения ранжирования документов (особенно по заголовкам), которые точно соответствуют популярным кластерам запросов, даже если у них мало ссылок. 2) Для автоматического переписывания широкого запроса пользователя в его наиболее популярные конкретные уточнения и объединения результатов.
  • US20150169589A1
  • 2015-02-26 (Continuation of application filed on 2009-04-29)
  • Семантика и интент

  • Свежесть контента

Как Google реализует кросс-языковой поиск (CLIR) с интерактивным уточнением переведенного запроса
Google использует систему кросс-языкового поиска (CLIR), которая переводит запрос пользователя на целевой язык, выполняет поиск и переводит результаты обратно. Ключевая особенность — интерактивный интерфейс, позволяющий пользователю отредактировать машинный перевод запроса или выбрать альтернативные варианты для повышения точности выдачи.
  • US8799307B2
  • 2008-04-29
  • Мультиязычность

  • Семантика и интент

Как Google использует сущности (Concepts) для определения точного контекста и генерации синонимов запроса
Google идентифицирует многословные фразы (Concepts) в запросе и рассматривает их как единое целое. Это позволяет системе понять точный контекст остальных слов в запросе и сгенерировать высокоточные синонимы (замены) на основе анализа поведения пользователей в логах запросов, минуя вычислительные ограничения стандартного N-граммного анализа.
  • US9104750B1
  • 2012-10-12
  • Семантика и интент

Как Google предотвращает потерю смысла при подборе синонимов для многословных запросов (механизм "Pseudo-Drop")
Google использует механизм валидации синонимов к многословным фразам, чтобы предотвратить потерю информации (т.н. "pseudo-drop"). Если синоним для всей фразы совпадает с синонимом только для её части, система блокирует такую замену. Это предотвращает чрезмерное обобщение запроса и сохраняет точность исходного поискового намерения.
  • US8661012B1
  • 2006-12-29
  • Семантика и интент

Как Google комбинирует временные тренды и контекстуальный анализ для определения схожести поисковых запросов
Google использует систему машинного обучения для определения схожести между запросами путем объединения разнородных сигналов. Система анализирует как временные паттерны использования терминов в разных источниках (Temporal Correlation), так и контекст, в котором термины появляются в интернете (Distributional Similarity). Комбинация этих данных позволяет генерировать более точные поисковые подсказки и связанные запросы.
  • US8478699B1
  • 2010-04-30
  • Семантика и интент

Как Google переписывает частичные запросы для улучшения подсказок Autocomplete, если стандартных вариантов недостаточно
Патент описывает механизм работы Google Autocomplete для сложных или редких запросов. Если система не находит достаточно качественных или популярных подсказок для введенного текста, она переписывает частичный запрос. Это включает классификацию терминов на обязательные и опциональные, удаление менее важных слов или замену слов на синонимы. Это позволяет предложить пользователю релевантные и популярные полные запросы, даже если они не идеально соответствуют тому, что было введено изначально.
  • US9235654B1
  • 2013-02-05
  • Семантика и интент

Как Google анализирует, извлекает и ранжирует данные из таблиц для формирования Featured Snippets
Google использует систему для идентификации таблиц с упорядоченными данными (рейтингами) на веб-страницах. Система анализирует структуру таблицы и контекст страницы (заголовки, окружающий текст, прошлые запросы), чтобы понять, что именно и по какому критерию ранжируется. Если исходная страница уже занимает высокие позиции, Google может извлечь данные из таблицы и показать их непосредственно в выдаче в виде Featured Snippet, отвечая на запросы о рейтингах и сравнениях.
  • US20190065502A1
  • 2015-04-21
  • Семантика и интент

  • Индексация

  • SERP

Как Google использует машинное обучение для распознавания разных смыслов запроса и ранжирования изображений в Image Search
Google использует модель машинного обучения для улучшения ранжирования в поиске по картинкам. Система определяет различные смыслы (senses) неоднозначного запроса (например, "Jaguar" как автомобиль и как животное), проецирует изображения в многомерное пространство признаков и строит гиперплоскости (hyperplanes) для разделения этих смыслов. Итоговый ранг изображения определяется его близостью к любому из релевантных смыслов.
  • US8923655B1
  • 2012-10-12
  • Семантика и интент

  • Мультимедиа

  • SERP

Как Google переводит изображения в текстовые запросы, валидируя метки через веб-поиск
Google использует эту систему для определения наилучшего текстового описания (метки) для изображения. Система тестирует различные варианты меток, используя их как поисковые запросы, и проверяет, сколько результатов поиска указывают на веб-страницы, содержащие исходное изображение. Это гарантирует, что выбранная метка точно отражает то, как изображение используется и понимается в интернете.
  • US9218546B2
  • 2012-06-01
  • Мультимедиа

  • Семантика и интент

  • Индексация

Как Google находит синонимы для транслитерированных запросов с помощью обратного языкового маппинга
Google использует механизм для идентификации синонимов слов, написанных транслитом (например, хинди, написанное латиницей). Поскольку транслитерация не имеет строгих правил орфографии, одно и то же слово может иметь много вариантов написания. Система определяет, какие слова являются транслитерацией, а затем пытается восстановить исходное слово на языке оригинала. Если разные варианты написания на латинице указывают на одно и то же слово на хинди, они считаются синонимами и используются для расширения запроса.
  • US8521761B2
  • 2009-07-15
  • Мультиязычность

  • Семантика и интент

Как Google использует поиск для сопоставления отзывов о товарах, у которых нет уникальных идентификаторов (GTIN, UPC)
Google использует механизм для агрегации отзывов о товарах в свой продуктовый каталог (например, Google Shopping). Если в отзыве отсутствует уникальный идентификатор товара (GTIN, UPC), система извлекает ключевую информацию (например, название товара), выполняет поиск в интернете и анализирует результаты выдачи. Найдя наиболее вероятный идентификатор в результатах поиска, Google связывает отзыв с соответствующим товаром в каталоге.
  • US20120254158A1
  • 2011-09-12
  • Google Shopping

  • SERP

  • Семантика и интент

Как Google анализирует видеоконтент, прогнозирует поисковые намерения пользователей и динамически показывает поясняющие карточки сущностей
Google использует машинное обучение для анализа транскрипции видео и прогнозирования, какие сущности (термины, концепции, объекты) зрители, скорее всего, захотят поискать. Система автоматически генерирует информационные «Карточки сущностей», используя контент из внешних веб-источников, и синхронно показывает их в интерфейсе плеера в момент упоминания сущности в видео.
  • US12072934B2
  • 2022-12-30
  • Knowledge Graph

  • Семантика и интент

  • Мультимедиа

Как Google превращает поисковые подсказки (Autocomplete) в задачи и напоминания, используя персональные данные пользователя
Google может интерпретировать поисковые запросы как намерение выполнить действие (например, «оплатить счет»). Система анализирует персональные данные (почту, календарь, контакты) и предлагает в поисковых подсказках не просто текст, а конкретные задачи. Выбор такой подсказки создает напоминание или событие напрямую, часто минуя стандартный поиск по веб-страницам.
  • US9483565B2
  • 2013-10-28
  • Персонализация

  • Семантика и интент

Как Google анализирует контент на экране пользователя для генерации и рекомендации контекстных поисковых запросов
Google использует систему для анализа контента, который пользователь просматривает в данный момент (веб-страница, приложение). Система генерирует потенциальные поисковые запросы на основе этого контента, оценивает их качество (популярность, качество результатов, визуальное выделение терминов) и предлагает пользователю лучшие запросы для быстрого контекстного поиска без необходимости вручную вводить текст.
  • US10489459B1
  • 2016-12-22
  • Семантика и интент

Как Google автоматически понимает контекст запросов, заданных во время просмотра видео, используя временные метки и анализ N-грамм
Google использует систему для автоматического уточнения запросов, заданных во время просмотра мультимедиа (например, «Кто это?»). Система определяет сущности (людей, объекты), присутствующие на экране в момент запроса, используя временные метки и анализ истории поисковых запросов (N-грамм). Затем она переписывает запрос, добавляя релевантный контекст, чтобы предоставить точный ответ без прерывания просмотра.
  • US9852188B2
  • 2014-06-23
  • Мультимедиа

  • Семантика и интент

  • SERP

Как Google решает, когда переводить запрос пользователя на другие языки, а когда уважать его языковой выбор
Google использует систему фильтрации для управления межъязыковым поиском (CLIR). Система анализирует язык запроса, язык интерфейса пользователя и его местоположение. Если пользователь вводит запрос на языке, отличном от языка интерфейса, Google предполагает мультиязычность и не переводит запрос, экономя ресурсы. Перевод активируется, если язык запроса совпадает с языком интерфейса, особенно если локальных результатов мало.
  • US9824147B1
  • 2013-02-28
  • Мультиязычность

  • Персонализация

  • Семантика и интент

Как Google комбинирует визуальные признаки и распознанный текст (OCR) внутри изображения для улучшения визуального поиска
Google использует технологию мультимодального поиска, которая анализирует как визуальные характеристики захваченного изображения (например, с камеры телефона), так и текст, распознанный внутри него (OCR). Комбинация этих двух типов данных позволяет точнее идентифицировать электронный оригинал изображения, что критически важно для работы систем визуального поиска (например, Google Lens).
  • US9323784B2
  • 2010-12-09
  • Мультимедиа

  • Индексация

  • Семантика и интент

Как Google выбирает главное изображение для сущности, анализируя тематичность веб-страниц и визуальные характеристики картинки
Google использует многоэтапный процесс для выбора наиболее репрезентативного (evocative) изображения для сущности (например, для Knowledge Panel). Система оценивает, насколько тематически связаны с сущностью как само изображение, так и веб-страницы, на которых оно размещено. Изображения с нерелевантных страниц отфильтровываются. Финальный выбор делается на основе визуальных характеристик, таких как распознавание лиц, логотипов или флагов.
  • US9110943B2
  • 2013-01-31
  • Knowledge Graph

  • Мультимедиа

  • Семантика и интент

Как Google использует машинное обучение для автоматического расширения запросов о фильмах и сериалах и показа связанного контента
Google использует систему для распознавания запросов, связанных с медиа (фильмы, сериалы). Если запрос идентифицирован как медийный, система автоматически расширяет его, добавляя семантически связанные термины (например, похожие шоу, актеров, жанры), найденные с помощью обученной модели машинного обучения. Это позволяет возвращать более широкий и релевантный набор результатов, даже если исходный запрос был узким.
  • US8484192B1
  • 2007-04-30
  • Семантика и интент

  • Мультимедиа

  • Knowledge Graph

Как Google находит и показывает наиболее релевантный фрагмент документа на мобильных устройствах
Google использует систему транскодирования для адаптации веб-страниц под мобильные устройства. Система анализирует документ, находит фрагмент, наиболее релевантный исходному поисковому запросу, и форматирует страницу так, чтобы этот фрагмент отображался вверху экрана. Это минимизирует необходимость прокрутки на маленьких дисплеях.
  • US8370342B1
  • 2005-09-27
  • Семантика и интент

Как Google использует визуальное сходство для связывания изображений и видео, кластеризации выдачи и обогащения метаданных
Google анализирует визуальное содержимое изображений и ключевых кадров видео для выявления сходств. Это позволяет связывать разнотипный контент, даже если у него мало текстовых данных. Система использует эти связи для переноса метаданных (например, ключевых слов или геопозиции) от одного ресурса к другому, а также для кластеризации и смешивания изображений и видео в результатах поиска.
  • US9652462B2
  • 2011-04-29
  • Мультимедиа

  • SERP

  • Семантика и интент

  • 1
  • …
  • 15
  • 16
  • 17
  • 18
  • 19
  • …
  • 21
seohardcore