Персонализация

Google анализирует реальные маршруты пользователей, чтобы понять, как связаны различные физические локации. Система определяет характеристики бизнеса (например, тип ресторана или его качество) на основе того, откуда приезжают посетители, куда они …
Google использует механизм для корректировки лент контента и результатов поиска. Система определяет долю пользователей с общей характеристикой (например, демография или интересы) в сети. Для пользователей, обладающих этой характеристикой, система гарантирует, …
Google использует данные из социального графа пользователя для обогащения результатов локального поиска. Когда пользователь ищет место (Point of Interest), система проверяет, кто из его контактов посещал это место (сейчас, недавно …
Google использует "восходящий" подход для наполнения лент контента (например, Google Discover). Система заранее генерирует множество запросов по теме и оценивает качество их результатов по метрикам свежести (Velocity), вовлеченности (Feedback), точности …
Патент Google описывает систему персонализации Карт, которая классифицирует пользователей на «туристов» и «местных жителей» на основе их профиля и знакомства с территорией. Система анализирует, с какими категориями объектов (POI) взаимодействуют …
Google использует специализированную систему для ранжирования физических событий в определенном месте и времени. Система вычисляет оценку популярности события на основе множества сигналов: количества упоминаний в интернете, кликов на официальную страницу, …
Google использует механизм предиктивного кэширования для ускорения работы поисковых подсказок (Autocomplete), особенно на мобильных устройствах. Система заранее отправляет наиболее вероятные подсказки, включая локально-специфичные, на устройство пользователя еще до начала ввода …
Google оптимизирует визуальный поиск (например, Google Lens), анализируя, куда пользователь нажимает на изображении. Система направляет основные вычислительные ресурсы (мощные нейросети, детальный OCR) на выбранную область, а остальную часть изображения обрабатывает …
Google использует генеративные нейросетевые модели (Sequence-to-Sequence) для динамического создания вариантов поисковых запросов. Система учитывает контекст и предполагаемую задачу пользователя для генерации уточнений или эквивалентных формулировок. Механизм Actor-Critic (обучение с подкреплением) …
Google определяет уникальную "зону охвата" (Catchment Area) для локального бизнеса, анализируя, из каких географических точек пользователи кликали на его результаты в поиске. Эта динамическая зона заменяет фиксированный радиус и используется …
Google определяет, насколько похожи друг на друга локальные бизнесы (например, рестораны), анализируя поведение пользователей. Система изучает, какие запросы вводят пользователи и как часто они кликают на конкретный бизнес в ответ …
Google решает проблему «холодного старта» для новых документов или специализированных поисковых вертикалей (например, Google Покупки, Книги). Если у системы недостаточно поведенческих данных (клики, время просмотра) для оценки контента в вертикальном …
Google использует систему для корректировки поискового ранжирования на основе местоположения и языка пользователя. Система приоритизирует данные о кликах от конкретной популяции пользователей (например, страны) над более широкими популяциями (например, глобальными …
Google создает персонализированную «Модель пользователя» на основе его личного контента (письма, события, контакты). Эта модель хранит ключевые термины и их контекст. Система использует ее, чтобы понять «неявное намерение» запроса — …
Патент Google, описывающий механизм переменной персонализации. Система рассчитывает «значения повышения» (Boost Values) для авторитетных сайтов, анализируя граф сайтов (Site Graph) и распространение авторитета от доверенных источников (Seed Sites). Пользователь может …
Google использует механизм для улучшения релевантности результатов путем анализа недавней истории поиска пользователя. Если текущий запрос похож на предыдущие, система определяет ключевые контекстные термины, которые часто повторялись в истории (устойчивый …
Google использует этот механизм для улучшения результатов по навигационным (брендовым) запросам. Система определяет официальный сайт и связанный с ним верифицированный профиль в социальной сети. Свежий или популярный контент (посты, изображения) …
Google использует систему для персонализации рекомендаций контента, анализируя характеристики документов (например, через TF-IDF) и создавая динамические профили интересов пользователей. Система обучается на основе поведения: разные типы взаимодействий (просмотр, печать, сохранение) …
Патент описывает систему (Agent Rank), позволяющую Google идентифицировать авторов контента с помощью цифровых подписей. Система рассчитывает репутационный балл для каждого автора на основе качества подписанного им контента и ссылок на …
Google использует механизм для сравнения и совместного ранжирования веб-страниц и нативных мобильных приложений. Поскольку оценки для веба и приложений рассчитываются по разным шкалам, система нормализует оценки приложений, приводя их к …