SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Персонализация в Google: разборы патентов

Детальные разборы патентов Google, связанные с персонализацией поиска
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google использует историю поиска и контекст (время, местоположение) для проактивного предложения релевантных прошлых результатов на разных устройствах
Google патентует систему, которая анализирует историю поиска пользователя и использует контекстуальные сигналы (время, местоположение и прошлое поведение, такое как клики и время на сайте), чтобы определить актуальность прошлых результатов. Система проактивно предлагает эти результаты в виде информационных элементов на разных устройствах, устраняя необходимость повторного поиска, например, показывая ресторан, который пользователь искал ранее и рядом с которым находится сейчас.
  • US8805828B1
  • 2012-01-13
  • Персонализация

  • Поведенческие сигналы

Как Google использует историю поиска и текущее местоположение пользователя для проактивных подсказок (Zero-Click)
Google использует механизм для проактивного предложения пользователю его прошлых поисковых запросов и результатов, на которые он кликал, основываясь на его текущем физическом местоположении. Система анализирует историю поиска, определяет связанные с ней локации и оценивает их близость к пользователю. Это позволяет предоставлять релевантные локальные подсказки без необходимости ввода запроса (Zero-Click), особенно на мобильных устройствах.
  • US8301639B1
  • 2010-01-29
  • Персонализация

  • Local SEO

  • Поведенческие сигналы

Как Google использует персональные оценки пользователей для переранжирования выдачи и расчета «рейтинга сайта»
Google может собирать явную обратную связь пользователя (рейтинги, метки, комментарии) по конкретным веб-страницам для персонализации будущих результатов поиска. Система переранжирует выдачу, повышая или понижая страницы на основе личных оценок. Кроме того, на основе оценок отдельных страниц рассчитывается общий «рейтинг сайта», который применяется к другим страницам этого же сайта, даже если пользователь их не оценивал.
  • US8166028B1
  • 2005-09-15
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google (YouTube) динамически приоритизирует каверы и альтернативные версии песен в блоке рекомендаций
Google использует механизм для улучшения рекомендаций на контент-платформах (например, YouTube). Когда пользователь проявляет интерес к конкретной песне в просматриваемом видео (явно или неявно), система идентифицирует другие видео, содержащие альтернативные версии этой же песни (каверы, живые выступления). Затем блок рекомендаций обновляется, чтобы приоритизировать показ этих альтернативных версий над стандартными похожими видео.
  • US10345998B2
  • 2016-11-10
  • Мультимедиа

  • Персонализация

  • Поведенческие сигналы

Как Google использует статистику поиска и кликов по разным вертикалям (Web, Картинки, Видео) для определения предпочтительного типа контента и ранжирования в Универсальном Поиске
Google анализирует, в каких вертикалях (корпусах) пользователи чаще ищут определенный запрос и на какие типы результатов они кликают в смешанной выдаче. Система вычисляет "Меру относительной релевантности" для каждого корпуса и использует её для повышения результатов из наиболее предпочтительного корпуса, учитывая язык, страну пользователя и актуальные тренды.
  • US8359309B1
  • 2011-02-07
  • SERP

  • Поведенческие сигналы

  • Мультимедиа

Как Google идентифицирует локальных экспертов и использует их отзывы для ранжирования в локальном поиске
Google использует систему для идентификации пользователей, являющихся «экспертами» в конкретных географических областях и категориях бизнеса, основываясь на объеме и качестве их отзывов. При локальном поиске система извлекает мнения этих экспертов и использует их как ключевой сигнал для ранжирования результатов. Система также может персонализировать выбор экспертов, отдавая предпочтение тем, чьи оценки совпадают с предпочтениями пользователя.
  • US9792330B1
  • 2013-04-30
  • Local SEO

  • EEAT и качество

  • Антиспам

Как Google динамически изменяет радиус локального поиска в зависимости от популярности бизнеса, типа запроса и активности пользователя
Google не использует фиксированный радиус для локального поиска. Система динамически определяет, насколько далеко пользователь готов пойти или поехать, учитывая тип запроса (кофейня или аэропорт), активность пользователя (пешком или за рулем) и популярность бизнеса. Это определяет, какие локальные компании попадают в выдачу (Local Pack и Карты).
  • US20150278860A1
  • 2014-03-25
  • Local SEO

  • Поведенческие сигналы

  • Персонализация

Как Google использует генеративные ИИ-модели (Seq2Seq) и Actor-Critic для динамического переписывания и верификации запросов на основе задач пользователя
Google использует генеративные нейросетевые модели (Sequence-to-Sequence) для динамического создания вариантов поисковых запросов. Система учитывает контекст и предполагаемую задачу пользователя для генерации уточнений или эквивалентных формулировок. Механизм Actor-Critic (обучение с подкреплением) контролирует этот процесс, итеративно улучшая понимание интента и проверяя точность ответов перед их показом.
  • US11663201B2
  • 2018-04-27
  • Семантика и интент

  • Персонализация

  • EEAT и качество

Как Google использует ручное изменение порядка результатов поиска пользователями для обучения алгоритмов ранжирования
Google патентует механизм, позволяющий пользователям вручную изменять порядок результатов поиска на странице (например, перетаскиванием). Эти действия интерпретируются как явные сигналы предпочтений (пользователь считает один результат лучше другого). Google агрегирует эти данные для обучения моделей машинного обучения и улучшения глобальных алгоритмов ранжирования или использует их для персонализации выдачи.
  • US8312009B1
  • 2007-02-14
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует поведенческие сигналы и совместные просмотры для генерации рекомендаций контента (например, "Похожие видео" на YouTube)
Google использует механизм коллаборативной фильтрации для определения связанности контента, анализируя логи взаимодействия пользователей. Система определяет, какой контент пользователи потребляют совместно в рамках одной сессии ("locality of time"). Учитываются только "позитивные взаимодействия" (например, длительный просмотр, высокая оценка). Это позволяет формировать рекомендации на основе реального поведения аудитории, а не только метаданных.
  • US8055655B1
  • 2008-02-15
  • Поведенческие сигналы

  • Персонализация

Как Google использует сигналы вовлеченности пользователей для ранжирования контента в системах без поискового запроса (например, Google Discover)
Патент описывает механизм генерации рекомендаций контента на основе того, что пользователь просматривает в данный момент, без ввода поискового запроса. Система анализирует текущий контент, находит связанные ресурсы и ранжирует их, основываясь преимущественно на метриках вовлеченности пользователей (трендовость, частота просмотров, совместные просмотры), а не только на текстовой релевантности.
  • US10152521B2
  • 2016-06-22
  • Поведенческие сигналы

  • Персонализация

Как Google использует курируемые пользователями коллекции контента (Web Notebooks) для ранжирования и генерации сниппетов
Google может использовать контент, собранный пользователями в коллекциях ("Web Notebooks"), как сигнал для ранжирования и генерации сниппетов. Если страница была сохранена в тематическую коллекцию, контекст которой (заголовки, аннотации) соответствует запросу, ее позиция может быть повышена. Кроме того, сохраненный пользователем фрагмент может использоваться в качестве сниппета в поисковой выдаче.
  • US9256676B2
  • 2007-05-10
  • SERP

  • Поведенческие сигналы

  • Персонализация

Как Google использует социальные связи и одобрения для персонализации и переранжирования локальной выдачи
Google патентует механизм интеграции социальных сигналов из "сетей участников" (социальных сетей) в локальный поиск. Система позволяет пользователям одобрять локальные бизнесы или рекламу. При поиске результаты переранжируются на основе этих одобрений, причем вес одобрения зависит от типа и степени связи между ищущим и одобряющим.
  • US7827176B2
  • 2004-06-30
  • Local SEO

  • Персонализация

  • Поведенческие сигналы

Как Google использует историю покупок, социальные связи, геолокацию и демографию для персонализации ранжирования в поиске по медиаконтенту (Приложения, Книги, Музыка, Фильмы)
Google применяет механизм для глубокой персонализации результатов поиска в вертикалях цифрового контента (например, Google Play). Система комбинирует стандартные оценки релевантности с персонализированными оценками, основанными на «сигналах предпочтений пользователя». Эти сигналы включают историю покупок и просмотров, демографические данные, местоположение, активность социальных кругов пользователя и историю потребления смежного контента (например, просмотр трейлера влияет на ранжирование книги).
  • US20140317099A1
  • 2013-04-23
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google определяет многоязычных пользователей и показывает им результаты на языке, отличном от языка запроса
Google использует механизм для идентификации пользователей, владеющих несколькими языками, анализируя язык текущего запроса, местоположение пользователя и историю его активности. Если пользователь находится в регионе с доминирующим языком (L2), но ищет на другом языке (L1), и система подтверждает владение обоими, Google переводит запрос на L2 и ищет контент на обоих языках. Это позволяет показывать наиболее релевантные результаты, даже если их язык отличается от языка запроса.
  • US20230325421A1
  • 2021-07-21
  • Мультиязычность

  • Поведенческие сигналы

  • Персонализация

Как Google определяет синонимы и варианты слов, анализируя категории выбранных пользователями результатов
Google использует метод стемминга, основанный на поведении пользователей и категориях сущностей. Если пользователи ищут разные слова (например, «пицца» и «пиццерия») и выбирают результаты одной категории («ресторан»), система идентифицирует эти слова как варианты одной основы (Stem Variants). Это происходит, если слова похожи по написанию ИЛИ если объем кликов статистически значим.
  • US9104759B1
  • 2012-01-13
  • Семантика и интент

  • Поведенческие сигналы

  • Персонализация

Как Google использует поведение в сессии (запросы и клики) для профилирования пользователей и персонализации выдачи на лету
Google анализирует действия пользователя в рамках текущей поисковой сессии, такие как специфическая терминология, орфография или клики по результатам, чтобы отнести его к определенной «Группе пользователей» (например, по профессии или демографии). Последующие результаты поиска переранжируются на основе того, что исторически популярно или непопупулярно в этой конкретной группе по сравнению с общей популяцией пользователей.
  • US8930351B1
  • 2010-03-31
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует машинное обучение для предсказания повторяющихся запросов и предоставления динамических результатов
Google использует систему машинного обучения для анализа контекста и поведения пользователей, чтобы предсказать, какие запросы будут повторяться в будущем. Для этих «повторяемых запросов» система упрощает ввод через ярлыки или меню. При повторном выполнении Google может намеренно изменять выдачу, предоставляя динамические результаты, и приоритизировать сканирование связанного контента.
  • US11868417B2
  • 2019-11-06
  • Поведенческие сигналы

  • Семантика и интент

  • Персонализация

Как Google использует сезонные и локальные события (Recurrent Queries) для определения местоположения пользователя
Google улучшает геолокацию пользователей, анализируя «повторяющиеся запросы» (Recurrent Queries) — запросы, популярность которых резко возрастает в конкретных регионах в определенное время (например, локальные праздники или события). Когда пользователь вводит такой запрос в соответствующий период, система с высокой уверенностью определяет его местоположение, даже если другие сигналы (IP, GPS) неоднозначны.
  • US20150169596A1
  • 2013-02-19
  • Local SEO

  • Поведенческие сигналы

  • Персонализация

Как Google управляет разнообразием и персонализацией в лентах контента (например, Discover), балансируя категории контента
Google использует систему для управления лентами контента (например, Google Discover). Различные серверы агрегируют контент в тематические блоки (Aggregated Content Data Structures) и оценивают их. Затем сервер смешивания выбирает эти блоки, активно балансируя их категории: он повышает оценки блоков из недопредставленных категорий и понижает из слишком частых, чтобы обеспечить заданное разнообразие и соответствие интересам пользователя.
  • US10129309B2
  • 2016-10-07
  • Персонализация

  • Поведенческие сигналы

Как Google использует контекст просмотра ТВ для модификации поисковых запросов в реальном времени
Google анализирует время, местоположение и содержание поискового запроса пользователя, сопоставляя их с данными о телепрограммах, транслируемых в данный момент. Если система предполагает, что запрос связан с просматриваемой передачей, она автоматически дополняет исходный запрос терминами из этой передачи для предоставления более релевантных результатов.
  • US8839303B2
  • 2011-06-30
  • Семантика и интент

  • Персонализация

  • SERP

Как Google использует матрицы схожести и анализ сессий для генерации предлагаемых поисковых запросов
Google использует систему для предложения альтернативных поисковых запросов, предсказывая следующий шаг пользователя в сессии. Система генерирует варианты путем замены терминов на контекстуально похожие (используя матрицы схожести) или путем расширения/сокращения фраз (используя таблицы соединений). Предложения оцениваются на основе их релевантности контексту сессии и исторической вероятности клика по их результатам.
  • US8438142B2
  • 2005-05-04
  • Семантика и интент

  • Поведенческие сигналы

  • Персонализация

Как Google выбирает между веб-сайтом (десктоп/мобайл) и нативным приложением для показа в результатах поиска
Google анализирует различные форматы доступа к контенту (например, десктопный сайт, мобильный сайт, нативное приложение). Система оценивает качество, скорость, стабильность и совместимость каждого варианта с устройством пользователя. В результатах поиска Google покажет ссылку на тот формат, который имеет наивысшую оценку качества для конкретного пользователя и устройства.
  • US9146972B2
  • 2013-03-15
  • SERP

  • Поведенческие сигналы

  • Персонализация

Как Google использует историю поиска и контекст пользователя для проактивной доставки информации (Основы Google Discover/Assistant)
Google анализирует историю поиска пользователя для выявления повторяющихся интересов (например, спорт, погода, статус рейсов), особенно тех, которые вызывают показ прямых ответов (Inline Search Results). Отслеживая контекст пользователя (местоположение, время) и изменения в информации, Google проактивно отправляет обновленные результаты на устройство без ручного ввода запроса.
  • US20130346396A1
  • 2013-07-12
  • Персонализация

  • Поведенческие сигналы

  • Свежесть контента

Как Google дифференцирует и взвешивает поведенческие сигналы для персонализации рекомендаций контента
Google использует систему для персонализации рекомендаций контента, анализируя характеристики документов (например, через TF-IDF) и создавая динамические профили интересов пользователей. Система обучается на основе поведения: разные типы взаимодействий (просмотр, печать, сохранение) по-разному влияют на профиль пользователя, а влияние этих поведенческих сигналов со временем ослабевает (Signal Decay).
  • US20170344572A1
  • 2009-01-29
  • Персонализация

  • Поведенческие сигналы

  • Свежесть контента

Как Google эффективно измеряет и ранжирует пользовательский опыт (UX) взаимодействия с контентом и рекламой
Патент описывает инфраструктуру Google для эффективной оценки пользовательского опыта. Система генерирует различные конфигурации страниц ("Типы Пользовательского Опыта", CETs), включающие комбинации контента и рекламы. Используется метод "динамического ресэмплирования" для сбора обратной связи от пользователей и быстрого ранжирования этих конфигураций по качеству, измеряя метрики удовлетворенности и раздражения.
  • US10282357B1
  • 2016-09-15
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует историю местоположений пользователя для поиска чужих фотографий, сделанных в том же месте и в то же время
Google может использовать историю местоположений устройства пользователя (GPS-логи или чекины) для поиска в интернете фотографий, сделанных другими людьми в тех же местах и в то же время. Система находит изображения с соответствующими метаданными (геокоординаты и время съемки) и предлагает их пользователю.
  • US9165017B2
  • 2011-09-29
  • Персонализация

  • Мультимедиа

  • Индексация

Как Google использует эмбеддинги и историю взаимодействий для персонализации результатов в вертикальном поиске (Hotels, Flights, Shopping)
Google использует методы коллаборативной фильтрации для персонализации выдачи в вертикальных поисках (Hotels, Flights, Shopping). Система анализирует историю взаимодействий всех пользователей, чтобы создать векторные представления (эмбеддинги) для элементов (отелей, товаров). Затем она сравнивает персональный эмбеддинг пользователя с эмбеддингами элементов для ранжирования результатов, максимально соответствующих его предпочтениям.
  • US20190171689A1
  • 2018-12-05
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует историю кликов для персонализации локальной выдачи и показа ранее посещенных страниц
Google создает «Профиль локального поиска», отслеживая, какие сайты пользователь посещал при поиске информации о конкретных местах. Когда пользователь снова ищет это место (или соседнее), Google показывает эти ранее посещенные сайты на видном месте в выдаче, даже если они не релевантны новому запросу, чтобы облегчить навигацию и помочь завершить задачу.
  • US8838621B1
  • 2011-06-16
  • Персонализация

  • Поведенческие сигналы

  • Local SEO

Как Google автоматически A/B тестирует и выбирает лучшие миниатюры (thumbnails) для максимизации CTR
Google использует систему для автоматической оптимизации миниатюр (thumbnails), сопровождающих ссылки на контент (например, видео или статьи). Система проводит A/B тестирование, показывая разные миниатюры для одного и того же контента разным пользователям. Она отслеживает показатели вовлеченности (клики, просмотры), вычисляет метрику качества (например, CTR) для каждой миниатюры и автоматически выбирает наиболее эффективный вариант для последующих показов.
  • US10037310B1
  • 2012-08-10
  • Поведенческие сигналы

  • Персонализация

  • 1
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • …
  • 10
seohardcore