Персонализация

Google патентует систему, которая использует модель машинного обучения (часто работающую локально в браузере), обученную на последовательностях действий пользователей. Модель предсказывает, на какую конкретную страницу (Action Interface) пользователь захочет перейти после …
Патент описывает систему (User Distributed Search), интегрированную в инструменты создания контента (например, Gmail, блоги). Google отслеживает, какие ссылки пользователи встраивают в свой контент, используя это как сигнал для ранжирования. Также …
Google патентует архитектуру диалогового поиска («Generative Companion»), которая поддерживает состояние пользователя (контекст, историю запросов и взаимодействий) на протяжении всей сессии. Система использует начальную LLM для генерации «синтетических запросов», классифицирует намерение …
Google использует специализированные AI-модели для разбивки сложных запросов (задач) на подзадачи. Система отслеживает, с какими подзадачами взаимодействует пользователь, и динамически обновляет выдачу, подгружая больше релевантного контента для этой подзадачи прямо …
Google патентует механизм, позволяющий пользователям взаимодействовать с конкретным результатом поиска через интерфейс чата (prompt input interface) прямо на странице выдачи. Искусственный интеллект анализирует запрос пользователя и его последующий промпт, определяет …
Google использует поведенческие данные сообщества пользователей для определения тематической связи между сайтами. Если пользователи часто посещают Сайт А и Сайт Б в течение короткого промежутка времени (Co-Visitation), система создает "Вектор …
Google анализирует поведение пользователей на выдаче, создавая "Профили Взаимодействия". Система учитывает продолжительность кликов (Short/Long Clicks), их последовательность (Single/Multiple Clicks, Pogo-sticking) и уточнение запросов. Эти данные используются для оценки удовлетворенности пользователей, …
Google анализирует последовательности действий пользователей ("Action Trails"), чтобы выявить общие "Задачи" (например, планирование отпуска). Система кластеризует эти данные и определяет ключевые темы и лучшие ресурсы для каждого этапа задачи на …
Google может персонализировать выдачу, определяя сайты, которые пользователь предпочитает (Document Bias Set) и которые одновременно являются глобально авторитетными (High Quality Document Set). Если эти авторитетные и предпочитаемые сайты ссылаются на …
Google не использует единую модель ранжирования. Система использует машинное обучение для создания множества специализированных моделей (Predicted Performance Functions), обученных на исторических данных о кликах для разных контекстов (Search Contexts). При …
Google анализирует журналы запросов, чтобы определить, как пользователи чаще всего уточняют широкие запросы. Система кластеризирует эти уточнения по темам (например, «кухня», «местоположение»), определяет наиболее разнообразную тему уточнения и предлагает пользователю …
Google рассчитывает «Affinity Score» для мобильных приложений на основе того, как часто и долго пользователь их использует (относительное вовлечение). При поиске с мобильного устройства система повышает в ранжировании результаты (deep …
Google использует механизм для ранжирования и рекомендации источников контента (например, YouTube-каналов или профилей) внутри платформ. Система анализирует, как часто источник упоминается в аннотациях, описаниях и комментариях к контенту, который просматривал …
Система перехватывает результаты поиска и проверяет их по реестру, содержащему пользовательские аннотации, метаданные и социальные связи. Затем результаты переупорядочиваются на основе релевантности, которая частично определяется этими аннотациями и метаданными. Пользователям …
Google патентует систему Retrieval-Augmented Generation (RAG) для повышения точности ответов LLM на локальные запросы. Специализированная «Research Model» извлекает актуальные фактические (адреса, часы работы) и субъективные (отзывы, рейтинги) данные из структурированных …
Патент описывает механизм генерации рекомендаций контента на основе того, что пользователь просматривает в данный момент, без ввода поискового запроса. Система анализирует текущий контент, находит связанные ресурсы и ранжирует их, основываясь …
Google анализирует историю посещений и действий пользователя в интернете, чтобы выявить незавершенные задачи (например, покупку товара или планирование поездки). Система использует графы вероятностных переходов для моделирования пути пользователя, прогнозирует его …
Google использует механизм для динамического обогащения просматриваемых веб-страниц. Система анализирует контент страницы и персональные данные пользователя (история поиска, местоположение, интересы), формирует комбинированный внутренний поисковый запрос, находит релевантные внешние документы или …
Патент Google описывает систему ранжирования результатов для сущностей (например, музыка, фильмы, бронирования). Система использует «Меру Эффективности» (Effectiveness Measure), которая учитывает два ключевых фактора: насколько быстро пользователь может получить контент или …
Google анализирует сессии пользователей для выявления ресурсов, которые часто посещаются последовательно (co-selected). Система строит граф этих связей и распространяет известные тематики (Contextual Profile) авторитетных ресурсов на связанные с ними страницы. …