Google анализирует набор документов, связанных с целевой страницей (например, другие страницы того же сайта или статьи того же автора). Система вычисляет агрегированную оценку для этого набора, отражающую общую тематическую релевантность …
Патенты Google
Разборы патентов поисковой системы Google
Патент описывает, как поисковая система магазина приложений (например, Google Play) улучшает свои результаты, используя данные из интернета. Система модифицирует исходный запрос пользователя, отправляет его в веб-поиск, анализирует найденные веб-страницы на …
Google использует географические сигналы ссылающихся сайтов для определения локальной релевантности целевого домена. Система анализирует контент, технические данные и, что важно, географию аудитории ссылающихся ресурсов, чтобы вычислить «Link Based Locale Score». …
Google верифицирует популярность контента (например, видео) проверяя, упоминается ли он на внешних источниках: блогах, новостных сайтах и в социальных сетях. Это позволяет формировать списки "популярного", отражающие подлинный широкий интерес, отфильтровывая …
Google разрабатывает систему сбора пользовательского контента (UGC) о веб-страницах, называемого «Link Notes». Система использует генеративный ИИ для создания персонализированных подсказок, мотивируя пользователей оставлять качественные отзывы на основе их экспертизы. Эти …
Google использует модель Марковских цепей (Transition Matrix) для количественной оценки силы взаимосвязей между поисковыми сущностями (запросы, документы, сессии, время) на основе истории поиска. Эта инфраструктура применяется для выявления и нейтрализации …
Google использует агрегированные данные о том, как пользователи взаимодействуют с контентом внутри документа. Система отслеживает время, проведенное на определенных разделах, и частоту добавления в закладки. Эта информация используется для определения …
Google анализирует запросы, введенные в адресную строку браузера. Если система с высокой степенью уверенности определяет один «очень релевантный» результат, основываясь на высоком историческом CTR и значительном отрыве его оценки релевантности …
Google анализирует поведение пользователей в поисковой выдаче для классификации интента запроса. Если клики сконцентрированы на одном результате (низкое разнообразие, высокая частота), запрос классифицируется как навигационный или брендовый (Data-Creator Targeting). Если …
Патент (Hewlett-Packard) описывает гибридный метод кластеризации документов. Система анализирует логи сессий, чтобы определить, какие документы просматриваются вместе (co-visitation). Эти документы объединяются в «Супердокументы». Затем система проводит контентный анализ, используя эти …
Google использует систему для оценки качества и честности пользователей (Raters), оставляющих отзывы. Анализируется, насколько сильно оценки пользователя отличаются от среднего мнения большинства. Если пользователь систематически отклоняется от консенсуса, ему присваивается …
Google использует механизм для корректного учета поведенческих сигналов (например, времени пребывания). Если пользователь кликает на результат в выдаче, а затем переходит по ссылке на другую страницу, система может перенести позитивные …
Google использует Дополненный Граф Ресурсов для расчета независимых от запроса оценок качества страниц. Этот граф объединяет традиционные ссылки с поведенческими данными: запросами, кликами и пользовательскими сессиями. Алгоритм, подобный PageRank, запускается …
Google использует систему для идентификации «триггерных запросов», которые активируют показ списка экспертов или авторитетных пользователей (например, из социальной сети) по данной теме. Система рассчитывает совокупную оценку авторитетности для запроса и …
Патент описывает модификацию алгоритма PageRank. Вместо предположения, что все ссылки на странице имеют равную вероятность клика (модель случайного серфера), система измеряет реальное поведение пользователей. Вес ссылки определяется фактической частотой ее …
Google определяет, является ли веб-страница авторитетным источником о конкретной сущности (Entity), анализируя все анкорные тексты входящих ссылок. Система находит консенсусное описание (Center of Mass). Если оно совпадает с именем сущности …
Google использует модель машинного обучения для прогнозирования «Оценки полезности» (Utility Score) документа, основанной на вероятности его показа и клика. Документы ранжируются по этой оценке, и только самые полезные (с учетом …
Google использует инфраструктуру для масштабируемой оценки электронных документов (включая веб-страницы и рекламу) с помощью распределенной сети асессоров. Система присваивает асессорам «Trust Score» (Оценку Доверия) и агрегирует их отзывы, учитывая контекстуальную …
Google анализирует структурированные данные (например, Schema.org) на страницах из результатов поиска. Чтобы проверить достоверность информации перед показом ее в виде прямого ответа (например, Featured Snippet), система ищет «согласованное значение» (Consistent …
Google использует статистические модели для прогнозирования того, как асессоры (Quality Raters) оценят релевантность результатов поиска. Модели обучаются на объективных сигналах, включая детальные поведенческие данные: последовательность кликов (Pogo-sticking), время до выбора …