SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Разборы патентов Google для SEO

Разобрано 1 300 из ~2 500
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google объединяет дубликаты изображений в кластеры и индексирует их как единое целое для улучшения визуального поиска
Google оптимизирует визуальный поиск, группируя почти идентичные изображения (измененный размер, обрезка) в единый кластер. Система индексирует не отдельные картинки, а совокупность всех визуальных признаков ("визуальных слов") из всех вариантов в кластере. Это повышает эффективность индекса и гарантирует согласованность результатов при поиске по изображению.
  • US8923626B1
  • 2012-06-25
  • Индексация

  • Мультимедиа

Как Google определяет главный объект на изображении, анализируя его размер, центральное положение и видимость
Google использует систему компьютерного зрения для определения основного предмета на изображении, содержащем несколько объектов. Система ранжирует распознанные объекты, отдавая предпочтение тем, которые крупнее по размеру, расположены ближе к центру кадра и меньше перекрываются другими элементами. Это напрямую влияет на индексацию и ранжирование в Google Images и Google Lens.
  • US9135305B2
  • 2011-03-23
  • Мультимедиа

  • Индексация

Как Google заложил основы Визуального Поиска (Google Lens), используя контекст (время, местоположение) и мультимодальное распознавание
Этот патент описывает фундаментальную архитектуру мобильного визуального поиска Google (например, Google Lens). Он детализирует, как изображение с телефона анализируется несколькими специализированными движками (объекты, текст, лица). Критически важно, что система использует контекст, такой как время суток и местоположение, для повышения точности распознавания и учитывает различные ракурсы и условия освещения перед возвратом релевантной информации.
  • US7751805B2
  • 2006-05-12
  • Мультимедиа

Как Google автоматически создает "Поисковые журналы" для трендовых тем на мобильных устройствах
Google патентует систему для автоматического создания форматированных "поисковых журналов" о трендовых темах. Система идентифицирует тренд, ищет новостные статьи, пользовательский контент (соцсети, фото, видео) и справочную информацию по теме, а затем компонует всё это в виде "издания", адаптированного под конкретное мобильное устройство.
  • US8849829B2
  • 2011-12-06
  • Свежесть контента

Как Google предварительно вычисляет результаты поиска для ожидаемых запросов, чтобы ускорить выдачу и повысить её качество
Google использует систему предиктивного поиска для повышения скорости и эффективности. Система прогнозирует, какие запросы пользователи введут в будущем, и заранее вычисляет для них результаты поиска, сохраняя их в специальном «предиктивном кэше». Это позволяет мгновенно обслуживать популярные и трендовые запросы, а также использовать более сложные алгоритмы ранжирования, поскольку вычисления происходят до получения запроса.
  • US20100318538A1
  • 2009-06-12
  • Индексация

Как Google использует визуальное сходство и графовый анализ (VisualRank) для валидации и ранжирования меток изображений
Google валидирует текстовые метки изображений (например, Alt-текст или имена файлов) с помощью визуального анализа. Система строит граф, связывающий визуально похожие изображения. Симулируя навигацию пользователя по этому графу (алгоритм, подобный PageRank), Google определяет, какие метки наиболее релевантны фактическому содержанию изображения, отфильтровывая шум и повышая качество поиска по картинкам.
  • US7961986B1
  • 2008-06-30
  • Мультимедиа

  • SERP

Как Google исправляет ошибки распознавания голосовых запросов с помощью последующих уточнений пользователя
Google позволяет пользователям исправлять ошибки распознавания голоса естественным образом (например, фразой «Нет, я имел в виду...»). Система анализирует исходный запрос и последующее уточнение, генерирует кандидатов на исправление, оценивает их популярность и фонетическое сходство, и формирует новый, корректный поисковый запрос.
  • US9514743B2
  • 2015-07-29
  • Семантика и интент

Как Google индексирует, ранжирует и структурирует события по времени и местоположению, обеспечивая темпоральное разнообразие
Патент Google, описывающий систему поиска событий, которая фильтрует результаты по времени и месту. Система разделяет запрошенный временной интервал (например, неделю) на сегменты (например, дни) и ранжирует лучшие события отдельно для каждого сегмента. Это предотвращает доминирование популярных событий одного дня и гарантирует видимость релевантных результатов на протяжении всего интервала.
  • US7647353B2
  • 2006-11-14
  • Индексация

  • Краулинг

  • Local SEO

Как Google объединяет автодополнение и перевод для показа подсказок с определениями на разных языках
Google использует механизм для улучшения работы словарных и переводческих сервисов. Когда пользователь вводит частичный запрос на одном языке, система предсказывает полные варианты запроса на основе исторических данных поиска. Одновременно система получает переводы этих предсказаний на другой язык и показывает пользователю список автодополнения, где рядом с каждым вариантом сразу отображается его перевод или краткое определение.
  • US8312032B2
  • 2008-07-10
  • Мультиязычность

Как Google использует взвешенную оценку метаданных для выявления дубликатов контента без анализа самих файлов
Патент Google описывает метод идентификации субстантивных дубликатов (например, товаров, видео или сущностей в разных форматах) исключительно путем сравнения их метаданных. Система нормализует данные, вычисляет взвешенную оценку сходства с учетом важности разных атрибутов и помечает контент как дублирующийся, если оценка превышает порог. Этот механизм критичен для согласования сущностей (Entity Reconciliation) в системах Google.
  • US8266115B1
  • 2011-01-14
  • Индексация

Как Google позволял сторонним провайдерам внедрять специализированные результаты в выдачу по подписке пользователя (Google Subscribed Links)
Патент описывает систему (известную как "Google Subscribed Links"), позволяющую сторонним поставщикам контента определять шаблоны запросов и предоставлять структурированные данные (DataObjects) через XML-фиды. Если запрос пользователя соответствовал шаблону и пользователь был подписан на этого провайдера, система внедряла специализированный ответ непосредственно на страницу результатов поиска.
  • US7593939B2
  • 2007-03-30
  • SERP

  • Индексация

  • Персонализация

Как Google использует репрезентативные наборы и Min-Hash для дедупликации видео и аудио в результатах поиска
Google использует масштабируемую систему для борьбы с дублированным и частично дублированным медиаконтентом (видео, аудио). Вместо сравнения всех файлов между собой, система создает компактные «репрезентативные наборы» для каждого элемента, используя фингерпринтинг и хеширование (Min-Hash). При получении запроса система сравнивает эти наборы для быстрого выявления дубликатов и выбора одной канонической версии для показа в выдаче.
  • US10152479B1
  • 2014-08-01
  • Мультимедиа

  • SERP

  • Индексация

Как Google кластеризует результаты поиска по картинкам и выбирает репрезентативное (каноническое) изображение для показа
Google организует результаты поиска изображений в иерархические кластеры на основе визуального сходства. Для каждого кластера выбирается «каноническое изображение» — часто это изображение с самым высоким исходным рейтингом или наиболее визуально авторитетное (с использованием метрик типа VisualRank). Эта структура определяет, как изображения группируются и какое изображение получает максимальную видимость в интерфейсе Google Images.
  • US8352465B1
  • 2010-09-03
  • Мультимедиа

  • SERP

Как Google использует векторный поиск (ANN) и многоэтапное ранжирование (L1/L2/L3) для нахождения похожих объектов
Этот патент описывает архитектуру поисковой системы (на примере 3D-моделей), которая критически важна для понимания современного веб-поиска. Google применяет векторный поиск (ANN) для быстрого отбора кандидатов (L1) и многоэтапное ранжирование (L2/L3), используя разные наборы признаков и составные функции оценки на каждом этапе для повышения эффективности и точности.
  • US8606774B1
  • 2010-05-18
  • Индексация

Как Google использует распознавание лиц для индексирования видео и понимания связей между людьми
Google использует систему для автоматического обнаружения, отслеживания и распознавания лиц в видеоконтенте. Это позволяет индексировать видео не только по метаданным, но и по конкретным людям, присутствующим в кадре. Система может определять сегменты с участием конкретного человека, даже если он временно покидал кадр, а также строить графы взаимодействий, показывая, кто с кем появлялся в видео. Это критически важно для понимания содержания видео и Video SEO.
  • US8401252B2
  • 2010-12-20
  • Индексация

  • Мультимедиа

  • Knowledge Graph

Как Google использует гибридную классификацию и OCR для извлечения ответов из личных фотографий пользователя
Google использует систему для ответа на текстовые запросы (например, «Сколько я потратил в ресторане?») путем анализа личной библиотеки изображений. Система предварительно классифицирует фотографии (например, чеки, меню, пейзажи), используя распознавание объектов и текста (OCR). Это позволяет быстро найти нужную информацию в релевантной категории и представить ответ в виде обрезанного изображения или аудиосообщения.
  • US10740400B2
  • 2018-08-28
  • Индексация

  • Мультимедиа

  • Семантика и интент

Как Google эффективно индексирует и ранжирует повторяющиеся события для персонального и структурированного поиска
Google использует специализированный метод для индексации повторяющихся событий. Система создает единый документ, разделяя общую информацию (название, описание) и уникальные детали каждого случая (дата, исключения). Для ранжирования применяется двухэтапный процесс: быстрая аппроксимация частоты события для первичной оценки и детальный анализ точного времени для финального скоринга.
  • US9760600B2
  • 2014-01-14
  • Индексация

Как Google анализирует одежду на изображениях для визуального поиска, игнорируя лица и фон
Google использует систему для визуального поиска похожих товаров. Система обнаруживает лицо на изображении, удаляет фон и участки кожи, чтобы изолировать предмет одежды. Затем, используя размер лица для нормализации масштаба, извлекаются небольшие фрагменты текстуры. Они обрабатываются нейронной сетью для классификации узора (игнорируя цвет) и создается цветовая гистограмма. Это позволяет находить визуально похожие товары.
  • US8873838B2
  • 2013-03-14
  • Мультимедиа

  • Google Shopping

  • Индексация

Как Google помогает пользователям найти релевантный контент внутри страницы после клика по результату поиска (Scroll-to-Text)
Патент описывает механизм (известный как Scroll-to-Text), который автоматически направляет пользователя к фрагменту текста на странице, наиболее релевантному его запросу. Google заранее определяет ключевые фрагменты (Resource Search Tidbits). Если после загрузки страницы эти фрагменты не видны на экране, система активирует навигацию и подсвечивает нужный текст.
  • US8392449B2
  • 2010-07-20
  • SERP

Как Google группирует результаты поиска из одного источника («Канала») в поисковой выдаче
Google использует механизм для изменения порядка результатов поиска на медиа-платформах. Если в выдаче присутствует несколько элементов контента (например, видео) из одного источника («Канала»), система может сгруппировать их в визуальный кластер, даже если это нарушает исходный порядок релевантности. Это улучшает восприятие выдачи и повышает видимость авторитетных источников.
  • US10216842B2
  • 2013-06-03
  • SERP

Как Google анализирует рендеринг страницы (DOM и CSS) для обнаружения скрытого текста и ссылок
Google использует методы анализа визуального представления страницы для выявления скрытого контента. Система строит структурное представление документа (DOM) и анализирует свойства элементов (цвет, размер, позиция, Z-index), чтобы определить, виден ли контент пользователю. Это позволяет обнаруживать и игнорировать манипуляции (спам), такие как текст цветом фона или позиционирование за пределами экрана.
  • US8392823B1
  • 2009-08-25
  • Антиспам

  • Структура сайта

  • Индексация

Как Google оптимизирует поиск по картинкам, обучаясь, какие визуальные атрибуты наиболее важны для конкретного изображения
Google использует механизм для повышения эффективности и релевантности поиска похожих изображений. Система анализирует изображение-запрос и создает эталонный набор высококачественных результатов (используя ресурсоемкую кластеризацию). Затем она тестирует различные визуальные атрибуты (измерения), чтобы определить, какой из них лучше всего воспроизводит этот эталонный набор. Найденный ключевой атрибут сохраняется и используется для быстрого ранжирования в будущем, минуя дорогие вычисления.
  • US8949253B1
  • 2012-05-24
  • Мультимедиа

Как Google идентифицирует перемещенный контент при сравнении версий веб-страниц во время индексации
Google использует итеративный алгоритм сравнения (например, LCS) для анализа изменений между старой и новой версиями веб-страницы. Система не просто определяет добавленный или удаленный контент, но и точно идентифицирует блоки, которые были перемещены в другое место. Используя метрику «Information Content», Google отличает существенные изменения контента от реорганизации макета.
  • US8121989B1
  • 2008-03-07
  • Индексация

Как Google использует Топ-N терминов и URL-паттерны для быстрой кластеризации похожих страниц на сайте
Google использует эффективный метод (O(n)) для группировки структурно похожих документов на веб-сайте. Система определяет страницы, у которых совпадают наиболее весомые термины (Топ-N), используя метрику Modified TF-IDF, смещенную в сторону шаблонного текста (boilerplate). Затем находится общий шаблон в их URL-адресах. Это позволяет быстро кластеризовать большие объемы контента для анализа структуры сайта и оптимизации индексирования.
  • US8200670B1
  • 2008-10-31
  • Индексация

  • Структура сайта

  • Техническое SEO

Как Google использует встраивание видео на внешних авторитетных сайтах для определения «новостной ценности» контента
Google анализирует, как часто видео встраивается на внешних авторитетных (whitelisted) сайтах. Чем чаще видео встраивается в контент по определенной теме (сущности Knowledge Base), тем выше его «новостная ценность». Эта метрика используется для отправки персонализированных уведомлений пользователям, заинтересованным в данной теме (высокий Affinity Score).
  • US10860650B1
  • 2016-09-01
  • Knowledge Graph

  • Мультимедиа

  • Краулинг

Как Google формирует и ранжирует подсказки в Autocomplete на основе исторических данных о запросах пользователей
Google использует систему, которая анализирует логи исторических запросов пользователей для предсказания полного запроса при вводе частичного. Система генерирует упорядоченный набор вероятных завершений, ранжируя их по популярности (частоте использования) или другим критериям. Это позволяет пользователям быстрее находить информацию и показывает, какие формулировки запросов наиболее распространены в сообществе.
  • US7487145B1
  • 2004-11-11
Как Google использует структурные разрывы (смены сцен и тишину) для идентификации дубликатов видео и организации видео-поиска
Google использует систему фингерпринтинга видео, которая анализирует не пиксели, а временные метки структурных разрывов — смены сцен (shot boundaries) и моменты тишины (silent points). Это позволяет идентифицировать дубликаты или похожий контент даже при различиях в кодировании, разрешении или частоте кадров, что используется для удаления нарушений авторских прав и организации результатов видео-поиска.
  • US8611422B1
  • 2007-06-19
  • Мультимедиа

  • Индексация

Как Google оптимизирует вычисление PageRank, используя адаптивную сходимость и матричные операции
Патент Google, описывающий технический метод повышения эффективности расчета итеративных алгоритмов ранжирования, таких как PageRank. Система использует тот факт, что ранги некоторых страниц стабилизируются (сходятся) быстрее, чем других. Определяя эти сошедшиеся ранги, система исключает их из активных вычислений на последующих итерациях, тем самым значительно сокращая общие вычислительные затраты.
  • US7028029B2
  • 2004-08-23
  • SERP

Как Google извлекает цены и изображения товаров с веб-страниц для Google Shopping
Этот патент описывает, как Google автоматически идентифицирует страницы электронной коммерции и извлекает структурированные данные о товарах (такие как цена и изображение) из неструктурированного HTML. Система использует анализ близости элементов, структуру HTML и сигналы форматирования для поиска правильных атрибутов, что формирует основу для поисковых систем по товарам, таких как Google Shopping.
  • US7836038B2
  • 2003-12-10
  • Google Shopping

  • SERP

  • Индексация

Как Google использует выделенный на странице контент для параллельного поиска в специализированных базах данных (приложения, расширения, товары)
Google патентует механизм «ассистированного поиска» для специализированных баз данных (например, магазинов приложений или расширений). Пользователь выделяет контент (текст/изображение) на веб-странице, и система использует его как запрос. Специальный конвертер анализирует выделенное, определяет несколько возможных интентов, оптимизирует их под конкретную базу данных и выполняет параллельный поиск, выдавая сгруппированные результаты.
  • US20230214427A1
  • 2022-11-21
  • Семантика и интент

  • SERP

  • 1
  • …
  • 36
  • 37
  • 38
  • 39
  • 40
  • …
  • 44
seohardcore