SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Разборы патентов Google для SEO

Разобрано 1 300 из ~2 500
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google интерпретирует общие запросы о путешествиях и преобразует их в структурированные данные для вертикального поиска (Google Flights/Hotels)
Google анализирует запросы на естественном языке (например, «отпуск в Европе летом»), введенные в основной поиск. Система определяет вероятность туристического интента и предполагает недостающие параметры (отправление, назначение, даты), используя историю пользователя и тренды. Если уверенность высока, запрос структурируется и направляется в специализированный движок (например, Google Flights), минуя стандартный веб-поиск.
  • US9430571B1
  • 2012-10-24
  • Семантика и интент

  • Персонализация

Как Google планирует использовать «Snippet Packets» для сохранения, курирования и публикации фрагментов веб-страниц как нового формата контента
Google разработал механизм «Snippet Packet», позволяющий пользователям сохранять определенный контент (текст, изображения) с веб-страницы. Пакет включает сам контент, URL и точные данные о местоположении (например, Text Fragments). Система генерирует интерактивные графические карточки для обмена и потенциальной публикации в вебе, позволяя пользователям возвращаться точно к исходному месту на странице.
  • US12038997B2
  • 2022-12-15
  • Семантика и интент

Как Google интегрирует результаты поиска и контекстные подсказки непосредственно в интерфейс браузера и приложений (Основы Omnibox и Google Desktop)
Патент Google, описывающий механизмы динамического изменения пользовательского интерфейса путем вставки контекстуальных результатов поиска или запросов к пользователю. Система анализирует элементы просматриваемого контента ("аспекты") и внедряет связанную информацию ("вставки") из локального индекса (история, файлы) или глобального поиска. Это закладывает основу для функций автодополнения в адресной строке (Autocomplete/Omnibox) и контекстного поиска.
  • US20090276408A1
  • 2009-07-16 (Приоритетная дата: 2004-03-31)
  • Индексация

  • Персонализация

  • Семантика и интент

Как Google использует прогрессивную загрузку результатов в поиске по картинкам во время автозаполнения запроса
Патент Google, описывающий механизм оптимизации загрузки результатов поиска по картинкам во время ввода запроса (as-you-type). Система сначала показывает небольшой набор изображений для лучшего предполагаемого запроса. Дополнительные результаты загружаются автоматически только в том случае, если система обнаруживает «сигнал заинтересованности пользователя» (например, прокрутку или паузу при вводе), что позволяет экономить ресурсы сервера и трафик.
  • US20150169643A1
  • 2012-05-14
  • Поведенческие сигналы

  • SERP

Как Google использует двухмерный индекс и пре-компьютерные пути для ультрабыстрого поиска в Knowledge Graph
Google использует специализированную архитектуру индекса для Knowledge Graph, отличную от веб-индекса. Патент описывает двумерную структуру индекса, которая позволяет обрабатывать сложные запросы к графу (связи сущностей, диапазоны, геолокация) с очень низкой задержкой. Система интегрирует текстовый поиск с графом, предварительно вычисляет сложные пути и использует специальные структуры для оптимизации локального и диапазонного поиска.
  • US9576007B1
  • 2013-12-10
  • Knowledge Graph

  • Индексация

  • Local SEO

Как Google выбирает главное изображение для сущности, анализируя тематичность веб-страниц и визуальные характеристики картинки
Google использует многоэтапный процесс для выбора наиболее репрезентативного (evocative) изображения для сущности (например, для Knowledge Panel). Система оценивает, насколько тематически связаны с сущностью как само изображение, так и веб-страницы, на которых оно размещено. Изображения с нерелевантных страниц отфильтровываются. Финальный выбор делается на основе визуальных характеристик, таких как распознавание лиц, логотипов или флагов.
  • US9110943B2
  • 2013-01-31
  • Knowledge Graph

  • Мультимедиа

  • Семантика и интент

Как Google объединяет изображение с камеры и одновременный аудиовход (речь и звуки) для выполнения сложных мультимодальных поисковых запросов
Система мультимодального поиска Google, которая одновременно обрабатывает визуальные данные с камеры и аудиоданные с микрофона. Система извлекает визуальные признаки, транскрибирует речь и анализирует звуковые сигнатуры. Это позволяет пользователям задавать контекстные вопросы об объектах в кадре (например, «[Фото платья] + Найди такое же синее») или диагностировать проблемы по звуку и изображению (например, шум неисправного прибора), получая релевантные результаты из веб-поиска, поиска по картинкам или от генеративных моделей.
  • US12346386B2
  • 2023-04-25
  • Мультимедиа

  • Семантика и интент

Как Google обогащает сниппеты брендов контентом из их социальных сетей при навигационных запросах
Google использует механизм для улучшения результатов по навигационным (брендовым) запросам. Система определяет официальную страницу субъекта в социальной сети и извлекает оттуда свежий или релевантный контент (например, последние посты или изображения). Этот контент затем комбинируется непосредственно со стандартным сниппетом официального сайта субъекта в поисковой выдаче, делая результат более актуальным и информативным.
  • US8799276B1
  • 2012-05-30
  • Свежесть контента

  • SERP

  • Семантика и интент

Как Google использует семантический анализ и оценку эстетики для генерации динамических превью видео под запрос пользователя
Google анализирует видео, разбивая его на сегменты и определяя семантические концепции (объекты, действия) в каждом кадре. Для каждой сцены выбирается лучший кадр, сочетающий информативность и визуальное качество. Эти кадры используются для создания динамических превью (storyboards) или замены тамбнейлов, адаптируясь под конкретный поисковый запрос или интересы пользователя для повышения CTR.
  • US9953222B2
  • 2015-09-08
  • Семантика и интент

  • Мультимедиа

  • Индексация

Как Google использует единый Image Embedding для параллельного поиска по разным вертикалям (Web, Shopping, Local) при визуальном запросе
Google патентует механизм для улучшения визуального поиска (например, Google Lens). Система генерирует единое векторное представление (Image Embedding) для изображения-запроса и использует его для одновременного поиска визуально похожих результатов в нескольких разных базах данных (например, в общем веб-индексе и специализированном индексе товаров или локаций). Контекст пользователя (местоположение, история) помогает системе выбрать, какие специализированные базы активировать для поиска.
  • US20240311421A1 (Application)
  • 2023-03-13
  • Мультимедиа

  • Индексация

  • Семантика и интент

Как Google динамически переключает выдачу с общего поиска на специализированные вертикали (Рецепты, Вакансии, Товары)
Патент описывает, как Google динамически определяет тематические "режимы поиска" (например, "Вакансии" или "Рецепты") на основе запроса. Система предлагает переключиться в специализированный режим, который использует структурированные данные вместо общего веб-индекса и предоставляет уникальные элементы интерфейса для фильтрации, сортировки и форматирования результатов по атрибутам, специфичным для данной тематики.
  • US7890499B1
  • 2006-12-01
  • SERP

  • Семантика и интент

Как Google использует жесты на экране (например, «Circle to Search») для генерации мультимодальных поисковых запросов
Google использует технологию, позволяющую инициировать поиск жестами (например, обведением объекта на экране). Система анализирует выбранный контент (текст, изображения, видео), извлекает ключевые темы, учитывает контекст страницы и пользователя (местоположение, время), взвешивает эти данные и автоматически формирует релевантный поисковый запрос.
  • US9916396B2
  • 2013-02-19
  • Семантика и интент

  • Мультимедиа

  • Персонализация

Как Google использует анализ контента для распределения пользовательских вопросов на тематически релевантные сайты
Патент описывает систему, функционирующую подобно рекламной сети (типа AdSense), но для Q&A. Google анализирует содержание веб-сайтов (издателей) и пользовательские вопросы для определения тематической релевантности. Затем система размещает релевантные вопросы на этих сайтах, чтобы эксперты, посещающие их, могли дать ответ. Это демонстрирует базовые механизмы Google для определения тематики контента.
  • US20080160490A1
  • 2007-03-22
  • Краулинг

  • Семантика и интент

Как Google использует статистические модели для разделения картографических запросов на "Что" (объект) и "Где" (локация)
Google использует статистическую модель, обученную на известных адресах и названиях организаций, для парсинга неоднозначных картографических запросов. Система сегментирует запрос, присваивает локационные типы и рассчитывает вероятность различных вариантов разделения, чтобы точно определить искомую локацию и объект поиска, особенно в языках без пробелов.
  • US8745065B2
  • 2009-07-07
  • Семантика и интент

  • Local SEO

  • Мультиязычность

Как Google извлекает ключевые концепции и сущности, анализируя контекст вокруг повторяющихся цитат и отрывков текста
Google анализирует, как одни и те же отрывки текста (например, цитаты) используются в разных документах. Система собирает весь окружающий текст (контекст) вокруг каждого вхождения отрывка и использует статистический анализ (например, TF-IDF), чтобы определить ключевые термины, сущности и концепции, связанные с этим отрывком. Это позволяет связывать документы по смыслу и улучшать навигацию.
  • US9323827B2
  • 2008-01-30
  • Семантика и интент

  • Индексация

  • Knowledge Graph

Как Google проверяет и отбирает редкие (long-tail) запросы для поисковых подсказок (Autocomplete)
Google использует механизм для валидации редких поисковых запросов, чтобы определить, стоит ли добавлять их в поисковые подсказки (Autocomplete). Редкие запросы нормализуются (каноникализируются) и сравниваются с популярными запросами. Если редкий запрос семантически эквивалентен популярному, он признается качественным и допускается к показу в подсказках. Это позволяет Google предлагать разнообразные и полезные long-tail подсказки, отсеивая спам и бессмысленные запросы.
  • US20150120773A1
  • 2011-10-26
  • Семантика и интент

  • Антиспам

Как Google оценивает авторитетность академических конференций и журналов по репутации их организаторов для ранжирования статей
Google использует репутацию и научный вес членов программных или редакционных комитетов (например, их цитируемость) для оценки качества академического события (конференции, журнала). Эта оценка качества события затем используется для ранжирования документов (например, научных статей), опубликованных в рамках этого события.
  • US8489614B2
  • 2005-12-14
  • EEAT и качество

  • SERP

Как Google находит, объединяет и обогащает связанные таблицы, разбросанные по разным веб-страницам
Google использует механизм для идентификации связанных таблиц ("stitchable tables") на разных веб-страницах. Система проверяет семантическую эквивалентность заголовков, извлекает скрытые атрибуты из окружающего контекста (текст, URL) и объединяет все данные в единую, обогащенную таблицу ("union table") для лучшего понимания структурированных данных в вебе.
  • US9720896B1
  • 2013-12-30
  • Семантика и интент

Как Google выбирает изображения для блоков с ответами (Featured Snippets), обеспечивая контекст и скорость
Google использует многоэтапный процесс для выбора изображений, отображаемых рядом с прямыми ответами на вопросы. Система генерирует отдельный запрос для поиска изображений на основе темы вопроса и заранее оценивает изображения на релевантных страницах. Когда источник текстового ответа определен, Google отдает предпочтение лучшему изображению с этой же страницы, гарантируя его контекстуальную связь с ответом.
  • US10691746B2
  • 2016-07-12
  • Мультимедиа

  • SERP

  • Семантика и интент

Как Google создает агрегированные блоки событий (Integrated Event View), объединяя факты, новости и фильтруя социальные сети
Google использует систему для идентификации событий (спорт, концерты) в запросах и генерации «Интегрированного представления события» (Integrated Event View). Эта система агрегирует фактические данные, результаты веб-поиска и контент из социальных сетей. Ключевой особенностью является фильтрация социальных сообщений с использованием семантического сходства (например, LSA) и геолокации для обеспечения релевантности.
  • US20110302153A1
  • 2011-06-03
  • Семантика и интент

Как Google определяет, является ли ответ на вопрос «Кто...?» именем человека или названием организации, и переранжирует выдачу
Google использует статистический анализ языка для разрешения неоднозначности в запросах (например, начинающихся с «Кто»). Система анализирует, как часто глагол и объект из запроса встречаются в корпусе текстов с субъектом-человеком по сравнению с субъектом-организацией. На основе этой вероятности Google переранжирует результаты, повышая или понижая позиции сущностей (людей или организаций) в зависимости от того, какой тип ответа ожидается.
  • US9063983B1
  • 2013-03-12
  • Семантика и интент

  • SERP

Как Google использует коллекции сущностей для определения коммерческого интента запроса
Google анализирует сущности (entities), распознанные в поисковом запросе, и определяет, к каким «коллекциям» (группам связанных сущностей) они принадлежат. Оценивая характеристики этих коллекций, система вычисляет вероятность коммерческого намерения пользователя. Этот механизм используется для разрешения неоднозначностей и принятия решения о показе релевантного коммерческого контента.
  • US20150088648A1
  • 2013-09-24
  • Семантика и интент

  • Knowledge Graph

  • SERP

Как Google визуализирует связи между рекомендованными видео с помощью "взвешенной совместной посещаемости"
Патент Google, описывающий интерфейс для просмотра рекомендаций видео. Система отображает центральное видео и связанные с ним ролики, расположенные вокруг него. Расстояние между видео зависит от их "оценки рекомендации", основанной на том, как часто пользователи смотрят эти видео одно за другим (взвешенная совместная посещаемость), и их корреляции друг с другом.
  • US7966632B1
  • 2007-12-12
  • Поведенческие сигналы

  • Мультимедиа

  • Персонализация

Как Google автоматически определяет ключевые темы в медиапотоках (ТВ, аудио, текст) и использует механизм "Boosting" для поиска релевантного контента
Система анализирует мультимедийные потоки (например, ТВ-трансляции) в реальном времени, преобразует их в текст и автоматически генерирует поисковые запросы. Используются классические методы IR (TF-IDF, стемминг, анализ контекста). Ключевой особенностью является механизм пост-обработки "Boosting", который переранжирует результаты поиска на основе дополнительного контекста, не вошедшего в исходный запрос.
  • US8868543B1
  • 2003-04-08
  • Мультимедиа

  • Семантика и интент

  • SERP

Как Google находит синонимы для транслитерированных запросов с помощью обратного языкового маппинга
Google использует механизм для идентификации синонимов слов, написанных транслитом (например, хинди, написанное латиницей). Поскольку транслитерация не имеет строгих правил орфографии, одно и то же слово может иметь много вариантов написания. Система определяет, какие слова являются транслитерацией, а затем пытается восстановить исходное слово на языке оригинала. Если разные варианты написания на латинице указывают на одно и то же слово на хинди, они считаются синонимами и используются для расширения запроса.
  • US8521761B2
  • 2009-07-15
  • Мультиязычность

  • Семантика и интент

Как Google автоматически классифицирует сущности в Knowledge Graph с помощью "Коллекций"
Google использует систему для автоматического создания и категоризации групп сущностей ("Коллекций") в Knowledge Graph на основе общих признаков. Патент описывает язык правил для определения принадлежности к коллекции и высокоэффективный механизм, который проверяет сущность на соответствие всем коллекциям за один проход, обеспечивая масштабируемость и актуальность данных.
  • US20150100605A1
  • 2014-02-21
  • Knowledge Graph

  • Индексация

  • Семантика и интент

Как Google автоматически звонит по телефону или перенаправляет на сайт, минуя страницу результатов поиска
Система Google, которая интерпретирует голосовые или текстовые запросы как команды к действию (например, «Позвони в пиццерию» или «Открой Википедию»). Вместо показа списка результатов система определяет лучший результат и автоматически инициирует звонок или перенаправляет браузер на целевую страницу после короткого обратного отсчета, если пользователь не отменит действие.
  • US8392411B2
  • 2010-08-06
  • Семантика и интент

  • Local SEO

Как Google автоматически генерирует и выполняет поисковые запросы на основе того, что пользователь смотрит или слушает
Google патентует систему проактивного поиска для "второго экрана". Анализируя исторические данные, система определяет, что пользователи ищут во время просмотра контента (фильма, матча). Когда новый пользователь смотрит этот контент, система распознает его (например, по звуку) и автоматически выполняет релевантные запросы в нужный момент, показывая свежие результаты без ручного ввода.
  • US10545954B2
  • 2017-03-15
  • Свежесть контента

  • Семантика и интент

  • Мультимедиа

Как Google использует взаимодействие с выдачей и контекст для уточнения временных рамок поиска
Google использует механизм для уточнения временного контекста запроса. Это происходит тремя способами: анализом временных указаний в самом запросе (например, «сезон охоты»), учетом текущего времени и местоположения пользователя (например, поиск «кофейни» ночью), или анализом того, какие результаты выбирает пользователь из первоначальной выдачи (например, выбор зимних фотографий). На основе этого уточненного временного контекста выдача перестраивается.
  • US8977609B1
  • 2012-09-14
  • Свежесть контента

  • SERP

  • Семантика и интент

Как Google анализирует, извлекает и ранжирует данные из таблиц для формирования Featured Snippets
Google использует систему для идентификации таблиц с упорядоченными данными (рейтингами) на веб-страницах. Система анализирует структуру таблицы и контекст страницы (заголовки, окружающий текст, прошлые запросы), чтобы понять, что именно и по какому критерию ранжируется. Если исходная страница уже занимает высокие позиции, Google может извлечь данные из таблицы и показать их непосредственно в выдаче в виде Featured Snippet, отвечая на запросы о рейтингах и сравнениях.
  • US20190065502A1
  • 2015-04-21
  • Семантика и интент

  • Индексация

  • SERP

  • 1
  • …
  • 26
  • 27
  • 28
  • 29
  • 30
  • …
  • 44
seohardcore