SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Разборы патентов Google для SEO

Разобрано 1 300 из ~2 500
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google извлекает факты из изображений для наполнения Knowledge Graph
Google использует технологию распознавания объектов на изображениях для обогащения своей Базы Знаний (Knowledge Graph). Система анализирует наборы изображений, определяет, какие сущности часто появляются вместе (например, «Медведь Гризли» и «Рыба»), и выводит отношения между ними (например, «ест»). Эти извлеченные факты затем используются для ответов на поисковые запросы.
  • US10534810B1
  • 2016-02-29
  • Knowledge Graph

  • Семантика и интент

  • Мультимедиа

Как Google динамически определяет стоп-слова в локальных запросах, тестируя разные интерпретации запроса
Google использует механизм для точной интерпретации локальных запросов, содержащих неоднозначные слова. Вместо статического удаления стоп-слов система генерирует несколько вариантов разделения запроса на субъект и местоположение. Она тестирует варианты с удалением и сохранением потенциального стоп-слова, выполняет параллельные поиски и выбирает ту интерпретацию, которая дает наилучшие результаты.
  • US9009144B1
  • 2012-03-29
  • Семантика и интент

  • Local SEO

Как Google использует граф сущностей для генерации расширенных географических подсказок в реальном времени
Google использует механизм для генерации расширенных поисковых подсказок (Expanded Query Suggestions), особенно в географическом поиске. Система идентифицирует сущности, соответствующие введенному префиксу, а затем обходит граф связанных сущностей (Entity Graph), чтобы предложить релевантные подсказки, которые не начинаются с этого префикса. Это позволяет предлагать конкретные места или бизнесы (например, «MoMA New York» на запрос «new y»), основываясь на географических, категорийных и популярных связях между сущностями.
  • US8694512B1
  • 2011-11-16
  • Knowledge Graph

  • Семантика и интент

  • Индексация

Как Google комбинирует визуальные признаки и распознанный текст (OCR) внутри изображения для улучшения визуального поиска
Google использует технологию мультимодального поиска, которая анализирует как визуальные характеристики захваченного изображения (например, с камеры телефона), так и текст, распознанный внутри него (OCR). Комбинация этих двух типов данных позволяет точнее идентифицировать электронный оригинал изображения, что критически важно для работы систем визуального поиска (например, Google Lens).
  • US9323784B2
  • 2010-12-09
  • Мультимедиа

  • Индексация

  • Семантика и интент

Как Google использует поиск для сопоставления отзывов о товарах, у которых нет уникальных идентификаторов (GTIN, UPC)
Google использует механизм для агрегации отзывов о товарах в свой продуктовый каталог (например, Google Shopping). Если в отзыве отсутствует уникальный идентификатор товара (GTIN, UPC), система извлекает ключевую информацию (например, название товара), выполняет поиск в интернете и анализирует результаты выдачи. Найдя наиболее вероятный идентификатор в результатах поиска, Google связывает отзыв с соответствующим товаром в каталоге.
  • US20120254158A1
  • 2011-09-12
  • Google Shopping

  • SERP

  • Семантика и интент

Как Google извлекает и ранжирует факты, используя сопоставление шаблонов, IDF и консенсус источников
Google использует многоэтапный процесс для ответов на запросы с пропусками (fill-the-blanks). Система преобразует запрос в шаблон, находит совпадения в тексте и извлекает ответ (Filler Text). Ранжирование ответов основано на уникальности терминов (IDF), качестве документа-источника (Document Quality) и частоте подтверждения этого ответа другими источниками (Relative Frequency), что позволяет валидировать факты через консенсус.
  • US7693829B1
  • 2005-04-25
  • Семантика и интент

  • SERP

Как Google динамически выбирает лучший кадр из видео (thumbnail) и точку воспроизведения под конкретный запрос пользователя
Google использует систему для динамического выбора thumbnail для видео в результатах поиска. Система анализирует запрос пользователя и содержание каждого кадра видео, преобразуя их в числовые векторы в общем семантическом пространстве. Кадр, наиболее близкий по смыслу к запросу, выбирается в качестве репрезентативного (thumbnail). Ссылка в выдаче может вести непосредственно к этому моменту в видео (Deep Linking).
  • US20160378863A1
  • 2015-06-24
  • Семантика и интент

  • Мультимедиа

  • Индексация

Как Google использует данные аналитики в реальном времени и контролируемый трафик для установления оригинального авторства контента
Google патентует метод для точной идентификации автора контента до того, как его обнаружит веб-краулер. Система использует уникальные идентификаторы (например, код веб-аналитики) и отслеживает первую активность автора с неопубликованным контентом (например, переходы по скрытым ссылкам между черновиками). Это позволяет зафиксировать временную метку в реальном времени, защищая от плагиата и обеспечивая корректную атрибуцию в поиске.
  • US9372927B1
  • 2013-03-15
  • EEAT и качество

  • Индексация

  • Краулинг

Как Google использует интерактивные карточки (Media Interfaces) для навигации по связанному контенту и плейлистам в медиаплеерах (например, YouTube)
Патент Google, описывающий механизм пользовательского интерфейса (UI) для медиаплатформ. Система отображает интерактивные карточки (Media Interfaces) для текущего контента и динамически подгружает карточки для связанного контента (видео или плейлистов) на основе схожести метаданных и анализа поведения пользователя. Это упрощает навигацию и обнаружение контента, особенно на устройствах с ограниченным экраном.
  • US20150301693A1
  • 2014-04-17
  • Мультимедиа

  • Персонализация

  • Поведенческие сигналы

Как Google определяет тематику и интент запроса, анализируя контент уже ранжирующихся страниц в выдаче
Google использует метод классификации запросов, который анализирует не сам текст запроса, а контент (URL, заголовки, сниппеты) страниц, находящихся в топе выдачи по этому запросу. Сравнивая набор терминов из этих результатов с эталонными профилями разных тематик или типов контента (Новости, Видео, Картинки), система определяет интент пользователя и решает, какие вертикали поиска активировать.
  • US8756218B1
  • 2011-08-16
  • Семантика и интент

  • SERP

Как Google использует real-time анализ текста, аудио и изображений для автоматической генерации запросов и проактивного поиска
Система Google для анализа информации, захваченной из различных источников (вводимый текст, изображения документов, аудиопотоки) в реальном времени. Система автоматически распознает контент, выделяет ключевые фрагменты, формирует поисковые запросы и мгновенно предоставляет пользователю релевантный цифровой контент или связанные действия без явных запросов. Это механизм, лежащий в основе технологий визуального (Lens) и голосового поиска.
  • US8990235B2
  • 2010-03-12
  • Семантика и интент

  • Персонализация

  • Мультимедиа

Как Google автоматически выбирает и показывает сравнительный контекст для фактов о сущностях в Knowledge Panel
Google анализирует популярность различных списков (например, "Самые высокие горы"). Когда пользователь спрашивает о факте (например, "высота К2"), система находит место этой сущности в самом популярном релевантном списке и добавляет контекст (например, "2-я по высоте гора в мире") в Knowledge Panel или голосовой ответ.
  • US10289625B2
  • 2016-09-15
  • Knowledge Graph

  • Семантика и интент

Как Google находит и показывает наиболее релевантный фрагмент документа на мобильных устройствах
Google использует систему транскодирования для адаптации веб-страниц под мобильные устройства. Система анализирует документ, находит фрагмент, наиболее релевантный исходному поисковому запросу, и форматирует страницу так, чтобы этот фрагмент отображался вверху экрана. Это минимизирует необходимость прокрутки на маленьких дисплеях.
  • US8370342B1
  • 2005-09-27
  • Семантика и интент

Как Google находит и предлагает более эффективные формулировки запросов через каноникализацию и оценку полезности
Google использует механизм для улучшения поисковых подсказок (Autocomplete). Система определяет запросы, которые имеют идентичную каноническую форму (тот же базовый интент после нормализации), но структурно отличаются от вводимого текста. Среди этих альтернатив выбираются те, которые исторически приводили к более высокой удовлетворенности пользователей (Query Utility Score), и предлагаются для повышения качества поиска.
  • US8868591B1
  • 2011-09-21
  • Семантика и интент

Как Google использует 3D-модели объектов для понимания контекста изображений и переписывания поисковых запросов
Google использует базу данных 3D-моделей для глубокого анализа объектов в поисковых запросах, особенно в изображениях. Система сопоставляет объект с его эталонной 3D-моделью, чтобы определить точный контекст: ориентацию, масштаб, освещение и окружающую обстановку. Затем исходный запрос переписывается с учетом этого контекста, что позволяет предоставлять более релевантные результаты, адаптированные под ситуацию (например, продукт на кухне vs продукт в магазине).
  • US9529826B2
  • 2013-12-26
  • Семантика и интент

  • Мультимедиа

Как Google ускоряет нейронный поиск, используя выборочные векторные взаимодействия токенов и механизм импутации
Google патентует высокоэффективную систему нейронного поиска (Contextualized Token Retriever). Она обеспечивает высокую точность за счет анализа взаимодействий на уровне отдельных контекстуализированных токенов между запросом и документом. Ключевое нововведение — механизм импутации, который позволяет рассчитывать релевантность, используя только предварительно извлеченные векторы, что радикально снижает вычислительные затраты.
  • US20250217373A1
  • 2024-12-30
  • Семантика и интент

  • Индексация

  • SERP

Как Google объединяет текстовые описания с разных сайтов для улучшения поиска по картинкам
Google улучшает поиск по картинкам, находя дубликаты или похожие изображения на разных сайтах. Система собирает все текстовые метки (из alt-текста, заголовков, окружающего текста), связанные с каждой копией изображения, объединяет их в единый набор и присваивает его всем копиям. Это позволяет находить изображение по любому из описаний, использованных в сети.
  • US7460735B1
  • 2004-09-28
  • Мультимедиа

  • Индексация

  • Семантика и интент

Как Google группирует свежие варианты запросов для быстрого выявления трендов в Автозаполнении (Autocomplete)
Google использует механизм для быстрого выявления новых трендов в поиске. Система анализирует "свежие запросы", приводит их к канонической форме и группирует варианты с одинаковым смыслом. Если группа набирает достаточную совокупную популярность, эти запросы добавляются в Автозаполнение (Query Suggestions), позволяя предлагать актуальные подсказки, даже если каждый отдельный вариант еще не популярен.
  • US20150178278A1
  • 2012-03-13
  • Свежесть контента

  • Семантика и интент

Как Google персонализирует рекомендации популярных запросов на основе истории поиска и браузинга пользователя
Google анализирует глобальные тренды поисковых запросов и сопоставляет их с индивидуальной историей пользователя (посещенные сайты, прошлые запросы, категории интересов). Если популярный запрос соответствует выявленным интересам пользователя, он будет рекомендован. Система также применяет фильтры, исключающие запросы, которые пользователь вводил недавно.
  • US9443022B2
  • 2012-01-19
  • Персонализация

  • Поведенческие сигналы

  • Свежесть контента

Как Google использует данные веб-поиска для распознавания сущностей в специализированных вертикалях (на примере поиска медиаконтента)
Google использует двухэтапный процесс для ответа на описательные запросы в специализированных поисках (например, поиск фильмов по сюжету). Сначала система ищет информацию в основном веб-индексе, анализирует топовые результаты для выявления релевантных сущностей (названий фильмов), а затем использует эти сущности для поиска в специализированной базе данных.
  • US9063984B1
  • 2013-03-15
  • Семантика и интент

  • Мультимедиа

  • Индексация

Как Google использует атрибуты сущностей для генерации «Дополненных запросов» и уточнения поиска
Google использует механизм для помощи в исследовании тем, связанных с сущностями (люди, места, продукты). Система распознает сущность в запросе, определяет ее ключевые атрибуты (анализируя результаты поиска или Knowledge Graph) и автоматически генерирует список предлагаемых «дополненных запросов» (Сущность + Атрибут). Это позволяет пользователю одним кликом запустить новый, более сфокусированный поиск по теме.
  • US10055462B2
  • 2013-03-15
  • Семантика и интент

  • Knowledge Graph

  • SERP

Как Google понимает контекст последовательных запросов и переписывает их для уточнения интента пользователя
Google использует систему для интерпретации серийных запросов, особенно в голосовом поиске. Если новый запрос является уточнением предыдущего (например, [погода завтра], затем [а во вторник]), система генерирует варианты, комбинируя старый и новый интенты. Затем она ранжирует эти варианты на основе популярности и семантической логики, чтобы выполнить наиболее вероятный итоговый запрос пользователя ([погода во вторник]).
  • US9165028B1
  • 2013-07-24
  • Семантика и интент

Как Google планирует заменить традиционный поисковый индекс единой нейросетью (Differentiable Search Index)
Анализ заявки на патент Google, описывающей радикально новую архитектуру поиска — Differentiable Search Index (DSI). В этой парадигме традиционный поисковый индекс (инвертированный или векторный) заменяется единой нейросетью (например, Transformer). Вся информация о корпусе документов сжимается и хранится непосредственно в параметрах модели. Модель обучается напрямую преобразовывать текст запроса в идентификатор релевантного документа (docid), минуя традиционные этапы поиска по индексу.
  • US20250165469A1 (Application)
  • 2023-02-09 (PCT Filed); 2022-02-09 (Provisional)
  • Индексация

  • Семантика и интент

Как Google объединяет персональную историю поиска и популярные запросы для формирования подсказок (Autocomplete)
Google формирует поисковые подсказки (Autocomplete), комбинируя два источника данных: запросы, которые пользователь вводил ранее (персональная история), и запросы, популярные среди сообщества пользователей. Система ранжирует эти подсказки, учитывая частоту и новизну персональных запросов, и визуально выделяет персональные подсказки от общих.
  • US8639679B1
  • 2011-05-05
  • Персонализация

  • Поведенческие сигналы

Как Google использует карусели сущностей для навигации и удержания пользователя в контексте поиска
Google использует механизм для поддержания поискового контекста при исследовании связанных тем. Когда пользователь изучает коллекцию сущностей одного типа (например, породы собак или фильмы актера), система отображает постоянный навигационный элемент (карусель). Это позволяет быстро переключаться между сущностями, обновляя результаты поиска и информационные блоки, не покидая исходную страницу выдачи.
  • US9965529B2
  • 2012-05-02
  • Knowledge Graph

  • SERP

  • Семантика и интент

Как Google Ads прогнозирует конверсию ключевых слов, используя кластеризацию интентов и агрегированные данные рынка
Google использует ML-систему для прогнозирования эффективности (например, коэффициента конверсии) ключевых слов в Google Ads, особенно для рекламодателей с недостаточными данными. Система анализирует контент сайта, определяет ключевые слова и соотносит их с кластерами запросов (интентами). Эффективность прогнозируется на основе агрегированных исторических данных о конверсиях для всего кластера интентов, а не только данных конкретного рекламодателя.
  • US20250110978A1 (Патентная заявка)
  • 2024-07-26
  • Семантика и интент

Как Google сегментирует поисковую выдачу по разным значениям запроса с помощью вкладок и семантических кластеров
Система для обработки неоднозначных запросов путем идентификации различных значений (концепций) запроса и представления их в виде отдельных вкладок (Tabs). Внутри каждой вкладки похожие результаты группируются в "стеки" (Stacks) для уменьшения дублирования, а для дальнейшего уточнения предлагаются динамически сгенерированные меню (Drill Down).
  • US20140229477A1
  • 2014-04-07
  • Семантика и интент

  • SERP

Как Google встраивает поиск (ботов) напрямую в чаты и голосовые звонки с помощью триггерных слов и контекста
Система отслеживает электронные разговоры (чаты, VoIP-звонки) на наличие триггерных слов. При активации она захватывает запрос, может использовать контекст разговора для его уточнения и внедряет краткий ответ обратно в поток беседы. Патент также описывает функцию автоматического звонка по найденному номеру (Search-to-Call).
  • US9031216B1
  • 2009-03-05
  • Семантика и интент

  • SERP

Как Google переписывает частичные запросы для улучшения подсказок Autocomplete, если стандартных вариантов недостаточно
Патент описывает механизм работы Google Autocomplete для сложных или редких запросов. Если система не находит достаточно качественных или популярных подсказок для введенного текста, она переписывает частичный запрос. Это включает классификацию терминов на обязательные и опциональные, удаление менее важных слов или замену слов на синонимы. Это позволяет предложить пользователю релевантные и популярные полные запросы, даже если они не идеально соответствуют тому, что было введено изначально.
  • US9235654B1
  • 2013-02-05
  • Семантика и интент

Как Google реализует кросс-языковой поиск (CLIR) с интерактивным уточнением переведенного запроса
Google использует систему кросс-языкового поиска (CLIR), которая переводит запрос пользователя на целевой язык, выполняет поиск и переводит результаты обратно. Ключевая особенность — интерактивный интерфейс, позволяющий пользователю отредактировать машинный перевод запроса или выбрать альтернативные варианты для повышения точности выдачи.
  • US8799307B2
  • 2008-04-29
  • Мультиязычность

  • Семантика и интент

  • 1
  • …
  • 25
  • 26
  • 27
  • 28
  • 29
  • …
  • 44
seohardcore