SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Разборы патентов Google для SEO

Разобрано 1 300 из ~2 500
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google динамически генерирует фильтры (теги) в выдаче на основе контента ранжируемых страниц
Google использует механизм для автоматического создания фильтров поисковой выдачи (например, в виде тегов или «пузырьков»). Система анализирует контент страниц, уже отобранных для показа по запросу, извлекает из них ключевые слова и проверяет их полезность, используя данные о поведении пользователей. Затем система отбирает наиболее релевантные и разнообразные фильтры, позволяя пользователю уточнить свой интент в один клик.
  • US10242112B2
  • 2016-06-15
  • Семантика и интент

  • SERP

  • Поведенческие сигналы

Как Google обучает модели машинного обучения для персонализации поиска при недостатке данных о пользователе
Этот патент описывает продвинутую технику машинного обучения, используемую Google для комбинирования различных типов сигналов (запрос, история пользователя, контекст) при ранжировании. Он использует метод иерархического взвешивания (тензорные произведения и слои), который гарантирует точность системы, даже если часть информации (например, история пользователя) отсутствует, отдавая приоритет фундаментальной релевантности над сложными взаимодействиями.
  • US9122986B2
  • 2012-11-05
  • Персонализация

  • Поведенческие сигналы

Как Google использует историю поиска и браузинга для персонализации выдачи и создания неявного "Избранного"
Google записывает историю поиска и просмотров пользователя для персонализации результатов. Система определяет "предпочтительные сайты" на основе частоты посещений, кликов и времени на сайте, повышая их в выдаче для этого пользователя. Патент также описывает объединение предпочтений пользователя с предпочтениями других людей для формирования комбинированного рейтинга.
  • US20060224608A1
  • 2005-03-31
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google определяет тематическую авторитетность источников ("каналов") и агрессивно продвигает их свежий контент
Google идентифицирует "каналы" (сайты, блоги, разделы), которые исторически создают высококачественный контент по определенным темам. Система рассчитывает тематическую авторитетность, учитывая качество контента и сфокусированность канала. Когда авторитетный канал публикует новый контент по своей теме, Google может агрессивно повысить его в выдаче, даже если у контента еще нет ссылок или поведенческих сигналов.
  • US8874558B1
  • 2012-09-11
  • EEAT и качество

  • Свежесть контента

  • Индексация

Как Google использует IDF и CTR для выбора языка перевода запросов в поиске по картинкам и видео (CLIR)
Google применяет механизм кросс-язычного поиска (CLIR) для улучшения выдачи изображений и видео. Система автоматически переводит запрос пользователя на другие языки, выбирая наиболее подходящий на основе частотности терминов (IDF) в его корпусе. Результаты поиска по переведенному запросу подмешиваются в основную выдачу, а их ранжирование зависит от статистики качества (например, CTR) этого запроса.
  • US8577910B1
  • 2009-06-09
  • Мультиязычность

  • Мультимедиа

  • Поведенческие сигналы

Как Google выбирает главные изображения для локаций и достопримечательностей, используя качество, клики и веб-контекст
Google использует иерархическую систему для выбора наилучшего репрезентативного изображения для локаций (городов) и достопримечательностей. Система оценивает фотографии по двум основным критериям: релевантности (основанной на кликах пользователей в поиске по картинкам и контексте веб-страниц, где размещено изображение) и визуальному качеству (четкость, экспозиция). Для крупных локаций система выбирает лучшее изображение из числа лучших фотографий её ключевых достопримечательностей.
  • US9076079B1
  • 2013-03-29
  • Мультимедиа

  • Поведенческие сигналы

  • Local SEO

Как Google использует историю посещений (чекины) пользователя и его друзей для персонализации локальной выдачи
Google может повышать в ранжировании места (рестораны, магазины), которые посещал сам пользователь или его контакты из социального графа. Система учитывает данные о физическом присутствии, давность посещения и силу социальной связи, чтобы персонализировать результаты локального поиска.
  • US9659065B1
  • 2013-06-05
  • Персонализация

  • Local SEO

  • Поведенческие сигналы

Как Google использует персональные выделения контента и поведение чтения для гиперперсонализации поисковой выдачи
Google отслеживает, какой текст пользователи выделяют на веб-страницах и как они читают контент (включая скорость прокрутки и потенциально отслеживание взгляда). Эта информация используется для глубокой персонализации будущих поисковых запросов: система аннотирует знакомые результаты, использует содержание выделенного текста для подбора другого релевантного контента и автоматически возвращает пользователя к последнему просмотренному фрагменту.
  • US11514126B2
  • 2020-05-19
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует репутацию контент-канала (например, YouTube) для ранжирования отдельных видео в зависимости от типа запроса
Google оценивает контент-каналы (например, YouTube), вычисляя специализированные «Оценки канала» (Channel Scores) для разных типов запросов (например, за свежесть или качество). Эти оценки рассчитываются на основе выбранного подмножества метрик канала и его контента, затем присваиваются отдельным видео и используются для корректировки их рейтинга в поиске.
  • US8949874B1
  • 2013-06-25
  • EEAT и качество

  • Свежесть контента

  • SERP

Как Google использует сущности, шаблоны и Knowledge Graph для уточнения смысла поисковых подсказок (Autocomplete)
Google анализирует поисковые подсказки, чтобы определить, ссылаются ли они на конкретные сущности или являются неоднозначными. Для уточнения смысла система добавляет семантические описания (например, «britney spears - Singer»). Эти описания генерируются на основе данных из Knowledge Graph, анализа авторитетных документов (например, Wikipedia) или предопределенных шаблонов для типов сущностей (например, «Movie [year]»). Это помогает пользователю выбрать правильный интент и может приводить к скрытому переписыванию запроса системой.
  • US20160217181A1
  • 2013-03-14
  • Семантика и интент

  • Knowledge Graph

  • EEAT и качество

Как Google персонализирует выдачу, определяя ваши аккаунты в соцсетях и показывая контент, которым поделились ваши контакты
Google использует механизм для определения других аккаунтов пользователя в социальных сетях (Кандидатные Идентификаторы), даже если они не были связаны явно. Система анализирует совпадение контактов между известным профилем пользователя и потенциальными аккаунтами. Затем результаты поиска персонализируются путем повышения контента, который был создан или аннотирован (например, расшарен) контактами из этих социальных сетей. Система также может запрашивать подтверждение владения аккаунтом прямо в поисковой выдаче.
  • US8972398B1
  • 2012-02-27
  • Персонализация

  • Поведенческие сигналы

Как Google извлекает факты из веб-страниц для прямых ответов и автоматического наполнения Knowledge Graph
Google использует систему для ответов на вопросительные запросы. Система анализирует текстовые сниппеты из результатов поиска, применяет NLP-анализ (аннотирование) для извлечения кандидатов в ответы и выбирает лучший на основе консенсуса и качества источников. Этот механизм используется как для предоставления прямых ответов пользователям (Featured Snippets), так и для автоматического поиска недостающей информации и обновления базы знаний (Entity Database).
  • US20160132501A1
  • 2015-05-11
  • Knowledge Graph

  • Семантика и интент

  • SERP

Как Google использует персональные оценки и метки (аннотации) для персонализации и переранжирования поисковой выдачи
Патент Google описывает систему, позволяющую пользователям явно оценивать, комментировать и помечать веб-страницы. Эти аннотации используются для переранжирования будущих результатов поиска пользователя, повышая полезные страницы и понижая бесполезные. Система также вычисляет общие оценки сайтов (Site Rating) на основе оценок отдельных страниц для дальнейшей персонализации.
  • US8990193B1
  • 2005-09-15
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google использует ручное изменение порядка результатов поиска пользователями для обучения алгоритмов ранжирования
Google патентует механизм, позволяющий пользователям вручную изменять порядок результатов поиска на странице (например, перетаскиванием). Эти действия интерпретируются как явные сигналы предпочтений (пользователь считает один результат лучше другого). Google агрегирует эти данные для обучения моделей машинного обучения и улучшения глобальных алгоритмов ранжирования или использует их для персонализации выдачи.
  • US8312009B1
  • 2007-02-14
  • Персонализация

  • Поведенческие сигналы

  • SERP

Как Google может верифицировать авторство контента, перехватывая момент его публикации через браузер пользователя
Google описывает механизм для точной идентификации авторов контента. Система (например, плагин браузера) отслеживает отправку контента через веб-формы (CMS, комментарии), фиксирует личность пользователя и отправленный текст. Затем Google проверяет, появился ли этот текст по указанному адресу, и связывает контент с верифицированным автором.
  • US9521182B1
  • 2013-02-08
  • EEAT и качество

Как Google автоматически создает и ранжирует шаблоны запросов с сущностями для улучшения поисковых подсказок (Autocomplete)
Google использует систему для автоматического обнаружения паттернов в поисковых запросах, которые включают фиксированные термины и сущности из определенной категории (например, «рестораны в [городе]»). Система генерирует шаблоны запросов, оценивает их качество на основе частоты использования, разнообразия сущностей и их распределения, а затем использует эти шаблоны для формирования более точных и структурированных поисковых подсказок в реальном времени.
  • US9529856B2
  • 2013-06-03
  • Knowledge Graph

  • Семантика и интент

  • Поведенческие сигналы

Как Google использует погоду, время, текущие события и социальные сигналы для персонализации поисковых подсказок (Autocomplete)
Google динамически изменяет поисковые подсказки (Autocomplete и переписанные запросы), основываясь на текущем контексте пользователя. Система учитывает такие факторы, как погода, время суток, актуальные новости, рекомендации друзей в социальных сетях и их местоположение. Стандартные подсказки переоцениваются и переранжируются в реальном времени, чтобы предложить пользователю наиболее релевантный запрос в данный момент и в данном месте.
  • US20160041991A1
  • 2013-05-20
  • Персонализация

  • Свежесть контента

  • SERP

Как Google использует историю поиска и текущее местоположение пользователя для проактивных подсказок (Zero-Click)
Google использует механизм для проактивного предложения пользователю его прошлых поисковых запросов и результатов, на которые он кликал, основываясь на его текущем физическом местоположении. Система анализирует историю поиска, определяет связанные с ней локации и оценивает их близость к пользователю. Это позволяет предоставлять релевантные локальные подсказки без необходимости ввода запроса (Zero-Click), особенно на мобильных устройствах.
  • US8301639B1
  • 2010-01-29
  • Персонализация

  • Local SEO

  • Поведенческие сигналы

Как Google персонализирует локальную выдачу и ранжирует отзывы, основываясь на отеле, в котором остановился пользователь
Google использует данные о месте проживания пользователя (например, отеле) для персонализации локального поиска. При поиске ресторанов или достопримечательностей система повышает в ранжировании те места, которые высоко оценили другие гости этого же отеля. Отзывы от постояльцев также показываются в приоритетном порядке, так как они считаются более релевантными для пользователя.
  • US9817907B1
  • 2014-06-18
  • Local SEO

  • Персонализация

  • Поведенческие сигналы

Как Google использует консенсус между топовыми результатами для валидации и выбора Featured Snippets (Short Answers)
Google использует систему оценки точности коротких ответов (Featured Snippets). Система сравнивает потенциальный ответ из топового результата с контентом других высокоранжированных страниц (контекстными пассажами). Если ответ подтверждается консенсусом между источниками, он получает высокий балл точности и отображается в выдаче. Это снижает вероятность показа неверной или спорной информации в блоках с ответами.
  • US12248529B2
  • 2022-03-09
  • SERP

  • EEAT и качество

Как Google использует контекст просмотра ТВ для модификации поисковых запросов в реальном времени
Google анализирует время, местоположение и содержание поискового запроса пользователя, сопоставляя их с данными о телепрограммах, транслируемых в данный момент. Если система предполагает, что запрос связан с просматриваемой передачей, она автоматически дополняет исходный запрос терминами из этой передачи для предоставления более релевантных результатов.
  • US8839303B2
  • 2011-06-30
  • Семантика и интент

  • Персонализация

  • SERP

Как Google использует совместное посещение сайтов в рамках одной сессии (Co-visitation) для классификации ресурсов по темам
Google анализирует, какие ресурсы пользователи посещают в рамках одной сессии (поисковой или браузерной). Если пользователь посещает известный ресурс по теме А, а затем в той же сессии посещает новый ресурс Б (даже в ответ на другой запрос), система предполагает, что ресурс Б также связан с темой А. Этот механизм позволяет автоматически классифицировать контент на основе реального поведения пользователей.
  • US20140108376A1
  • 2008-11-26
  • Семантика и интент

  • Поведенческие сигналы

Как Google использует социальные связи и одобрения для персонализации и переранжирования локальной выдачи
Google патентует механизм интеграции социальных сигналов из "сетей участников" (социальных сетей) в локальный поиск. Система позволяет пользователям одобрять локальные бизнесы или рекламу. При поиске результаты переранжируются на основе этих одобрений, причем вес одобрения зависит от типа и степени связи между ищущим и одобряющим.
  • US7827176B2
  • 2004-06-30
  • Local SEO

  • Персонализация

  • Поведенческие сигналы

Как Google обогащает оцифрованные документы (например, книги), автоматически находя и встраивая связанный веб-контент
Google улучшает представление оцифрованных документов (книг, статей), определяя их атрибуты (автор, название) и автоматически выполняя веб-поиск связанной информации (обзоров, биографий). Эта информация затем представляется вместе с исходным документом на «Справочной странице» (Reference Page), иногда путем прямого извлечения данных с релевантных веб-сайтов.
  • US8386453B2
  • 2004-09-30
  • Индексация

  • Ссылки

  • Семантика и интент

Как Google использует историю поиска и контекст (время, местоположение) для проактивного предложения релевантных прошлых результатов на разных устройствах
Google патентует систему, которая анализирует историю поиска пользователя и использует контекстуальные сигналы (время, местоположение и прошлое поведение, такое как клики и время на сайте), чтобы определить актуальность прошлых результатов. Система проактивно предлагает эти результаты в виде информационных элементов на разных устройствах, устраняя необходимость повторного поиска, например, показывая ресторан, который пользователь искал ранее и рядом с которым находится сейчас.
  • US8805828B1
  • 2012-01-13
  • Персонализация

  • Поведенческие сигналы

Как Google оценивает отсутствующие факты для Knowledge Graph и объясняет, на чем основана эта оценка
Google использует статистические модели для заполнения пробелов в Knowledge Graph, когда информация о сущности отсутствует. Система вычисляет недостающий факт (например, дату рождения), анализируя связанные данные (например, возраст супруга). Чтобы повысить доверие к этой оценке, Google показывает пользователю объяснение, основанное на наиболее влиятельных фактах, использованных при расчете.
  • US9659056B1
  • 2013-12-30
  • Knowledge Graph

  • EEAT и качество

  • Семантика и интент

Как Google заменяет поисковый запрос на более популярный трендовый запрос внутри социальных сетей
Механизм поиска внутри социальных сетей, который сравнивает популярность (частоту использования) исходного запроса с популярностью связанных запросов за определенный период времени. Если связанный запрос является более трендовым, система показывает результаты для него, а не для исходного запроса, чтобы направить пользователя к более активному и популярному контенту или сообществам.
  • US8892591B1
  • 2012-10-01
  • Свежесть контента

  • SERP

  • Поведенческие сигналы

Как Google собирает и анализирует поведение пользователей после клика для оценки удовлетворенности поиском
Google использует распределенную сеть агентов (браузеры, тулбары, скрипты на сайтах) для сбора детальной навигационной статистики и данных о поведении пользователей после перехода из поиска. Ключевым показателем является частота «завершения поисковой сессии» на странице, что указывает на удовлетворенность пользователя. Эта система позволяет Google оценивать качество страниц на основе реальных пользовательских взаимодействий.
  • US8601119B1
  • 2011-07-01
  • Поведенческие сигналы

  • SERP

Как Google использует машинное обучение для проверки логотипов и названий организаций перед показом в поисковой выдаче (включая рекламу)
Google применяет систему для валидации брендовых ассетов (изображений и названий организаций) перед их отображением в результатах поиска. Система использует ML-модели для двух проверок: является ли изображение приемлемым (не нарушает правила, не имитирует чужие бренды) и верифицирована ли организация (используя платежную информацию для рекламы, органический рейтинг и базы доверенных компаний). Это предотвращает спуфинг и повышает доверие пользователей.
  • US11954167B1
  • 2022-12-21
  • EEAT и качество

  • Антиспам

  • SERP

Как Google использует персональные оценки пользователей для переранжирования выдачи и расчета «рейтинга сайта»
Google может собирать явную обратную связь пользователя (рейтинги, метки, комментарии) по конкретным веб-страницам для персонализации будущих результатов поиска. Система переранжирует выдачу, повышая или понижая страницы на основе личных оценок. Кроме того, на основе оценок отдельных страниц рассчитывается общий «рейтинг сайта», который применяется к другим страницам этого же сайта, даже если пользователь их не оценивал.
  • US8166028B1
  • 2005-09-15
  • Персонализация

  • Поведенческие сигналы

  • SERP

  • 1
  • …
  • 13
  • 14
  • 15
  • 16
  • 17
  • …
  • 44
seohardcore