SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

Knowledge Graph в Google: разборы патентов

Детальные разборы патентов Google, связанные с графом знаний
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google использует графы сущностей для точного семантического сопоставления запросов и контента
Google применяет семантический подход к выбору контента, строя «граф запроса» на основе сущностей в запросе и их связей в Knowledge Graph. Этот граф затем сопоставляется с «графами критериев выбора контента». Система также может автоматически генерировать эти критерии, анализируя целевой контент и выявляя статистически значимые семантические шаблоны.
  • US9501530B1
  • 2014-04-01
  • Семантика и интент

  • Knowledge Graph

Как Google создает, управляет и использует Репозиторий Фактов (Fact Repository) для поиска по сущностям
Патент описывает архитектуру Google для создания и использования Репозитория Фактов. Система извлекает факты из интернета, связывает их с объектами (сущностями), очищает и нормализует данные. В ответ на запрос система находит релевантные факты и возвращает их в формате структурированного фида (например, XML/RSS). Это foundational-технология для поиска по сущностям и формирования Графа Знаний.
  • US7454398B2
  • 2006-02-17
  • Knowledge Graph

  • Семантика и интент

  • Индексация

Как Google извлекает факты из неструктурированного текста, используя «Контекстные Облака» для наполнения Knowledge Graph
Google использует механизм для понимания фактов и связей, описанных в свободном (неструктурированном) тексте. Система анализирует слова, окружающие сущность («Контекстное Облако»), и сравнивает этот контекст с тем, как эти слова используются в уже известных фактах. Это позволяет системе извлекать новую информацию и автоматически расширять Knowledge Graph, даже если контент не использует строгую разметку или шаблоны.
  • US10102291B1
  • 2015-07-06
  • Knowledge Graph

  • Семантика и интент

Как Google ранжирует сущности в Knowledge Graph, используя адаптивные веса для метрик вклада, известности и наград
Google использует систему для ранжирования сущностей, извлеченных из Knowledge Graph. Система рассчитывает четыре ключевые метрики: связанность, значимость типа, вклад и награды. Затем она применяет весовые коэффициенты, которые адаптируются в зависимости от типа сущности (например, «Фильм» или «Человек»), чтобы определить итоговый рейтинг. Это влияет на то, какие сущности будут показаны в каруселях, панелях знаний и других функциях поиска, связанных с сущностями.
  • US10235423B2
  • 2012-12-12
  • Knowledge Graph

  • Семантика и интент

  • SERP

Как Google определяет и ранжирует наиболее важные факты о сущности на основе совместных упоминаний в интернете
Google использует механизм для определения наиболее важных свойств (фактов) о сущности в контексте ее типа. Система анализирует частоту совместного упоминания (co-occurrence) сущности и связанных с ней сущностей в интернете (Related Entity Score), агрегирует эти данные для каждого свойства (Property Score) и сортирует свойства по важности. Это определяет, какие факты будут показаны первыми в результатах поиска, например, в Панели знаний.
  • US9256682B1
  • 2012-12-05
  • Knowledge Graph

  • Семантика и интент

Как Google использует Knowledge Graph для выбора формата отображения и ранжирования ответов на запросы с модификаторами (например, «лучший», «самый высокий»)
Google использует этот механизм для ответов на запросы, содержащие сущности и модификаторы (например, «самые высокие здания» или «лучшие фильмы»). Система анализирует запрос, извлекает данные из Knowledge Graph и автоматически определяет, как ранжировать результаты (например, по высоте или рейтингу) и в каком формате их представить (например, в виде списка, карты, временной шкалы или диаграммы) на основе свойств сущностей.
  • US9390174B2
  • 2012-08-08
  • Knowledge Graph

  • Семантика и интент

  • SERP

Как Google связывает запросы с сущностями для формирования выдачи, подсказок и определения доминирующего интента
Google использует систему для определения того, какие сущности (люди, места, объекты) подразумеваются в поисковом запросе. Система анализирует, насколько релевантны топовые документы запросу и насколько центральное место в этих документах занимает конкретная сущность. На основе этого рассчитывается оценка Entity Score, которая определяет ранжирование сущностей для запроса. Этот механизм используется для показа блоков знаний, организации поисковой выдачи и предоставления уточняющих поисковых подсказок.
  • US20160224621A1
  • 2013-03-13
  • Семантика и интент

  • Knowledge Graph

  • SERP

Как Google использует популярность сущностей для понимания и структурирования запросов в вертикальном поиске
Google интерпретирует запросы в специализированных доменах (например, медиа, товары, музыка), используя базу данных сущностей с оценками популярности (Entity Scores). Система распознает сущности в запросе, разрешает неоднозначности с помощью этих оценок и контекста, и преобразует неструктурированный текстовый или голосовой запрос в структурированный поиск по конкретным полям (например, ищет имя актера в поле «Актер»).
  • US9116918B1
  • 2012-11-14
  • Семантика и интент

  • Knowledge Graph

Как Google изучает свойства и атрибуты сущностей, анализируя логи поисковых запросов пользователей
Google использует автоматизированный метод для построения базы знаний о сущностях (Entity) и их атрибутах (Attribute). Система анализирует миллионы поисковых запросов, выявляя лингвистические паттерны (например, «столица Франции»). Это позволяет понять, какие атрибуты важны для разных типов сущностей (например, «население» для города, «побочные эффекты» для лекарства), и сформировать структурированное знание об объектах реального мира.
  • US8005842B1
  • 2007-05-18
  • Knowledge Graph

  • Семантика и интент

Как Google использует Knowledge Graph для ответа на запросы о пространственной и временной близости сущностей (например, «банки рядом с ресторанами»)
Google обрабатывает сложные «композиционные запросы», сравнивая атрибуты (местоположение или время) разных типов сущностей в Knowledge Graph. Система находит пары, удовлетворяющие критерию связи (например, расстоянию), и визуализирует результаты на картах или временных шкалах с возможностью динамической фильтрации.
  • US11003729B2
  • 2012-12-12
  • Knowledge Graph

  • Семантика и интент

  • Local SEO

Как Google учится выводить недостающие факты для Графа Знаний, анализируя текст в интернете и существующие связи
Система Google для заполнения пробелов в Графе Знаний. Если факт отсутствует (например, отношение «дедушка»), система ищет текстовые подтверждения в интернете («A — дедушка B»). Затем она анализирует существующие связи в графе (например, A — родитель C, C — родитель B) и выводит правило (Родитель + Родитель = Дедушка). Это позволяет отвечать на фактические запросы, даже если связь явно не указана в базе знаний.
  • US9842166B1
  • 2014-08-08
  • Knowledge Graph

  • Семантика и интент

Как Google использует результаты веб-поиска для выбора правильного ответа на неоднозначные фактические запросы
Google использует этот механизм для разрешения неоднозначности в запросах (например, «возраст Вашингтона»). Система генерирует несколько потенциальных ответов из Knowledge Graph, а затем проверяет, какой из них лучше всего подтверждается топовыми результатами органического поиска. Оценка кандидата зависит от того, насколько часто и уверенно Сущность (Topic) и Ответ (Answer) упоминаются (аннотируются) на страницах в топе выдачи.
  • US9336269B1
  • 2013-03-14
  • Семантика и интент

  • Knowledge Graph

  • SERP

Как Google автоматически определяет ключевые характеристики (атрибуты) сущностей, анализируя неструктурированный веб-контент
Google использует этот механизм для автоматического определения схемы (набора атрибутов) для любой сущности. Анализируя, как различные веб-страницы описывают набор схожих объектов (например, список фильмов), система выявляет новые релевантные характеристики (например, «Режиссер», «Время выполнения»), извлекая их из таблиц, списков или шаблонов страниц в интернете.
  • US8615707B2
  • 2009-01-16
  • Knowledge Graph

  • Семантика и интент

Как Google использует базу данных сущностей (Knowledge Graph) для формирования прямых ответов на вопросы о фактах
Google использует систему для идентификации запросов, направленных на получение фактов о конкретной сущности (Entity-Triggering Questions). Система анализирует топовые результаты поиска, определяет, какие сущности чаще всего ассоциируются с этими документами, и выбирает наиболее релевантную сущность. Затем система извлекает запрошенный атрибут (например, адрес, дату рождения) из своей базы данных сущностей или находит лучший сниппет, содержащий этот факт, чтобы предоставить прямой ответ пользователю.
  • US9081814B1
  • 2013-03-12
  • Knowledge Graph

  • Семантика и интент

  • SERP

Как Google использует сущности, онтологии и векторные представления для кластеризации и организации поисковой выдачи
Google использует этот механизм для структурирования поисковой выдачи по широким запросам. Система группирует результаты в кластеры на основе их связи с сущностями из Базы Знаний. Для объединения кластеров используются онтологические связи (иерархия, синонимы) и векторная близость (embedding similarity). Система параллельно тестирует несколько алгоритмов и выбирает наилучшую структуру SERP на основе метрик качества (покрытие, баланс, пересечение, силуэт).
  • US10496691B1
  • 2015-09-08
  • SERP

  • Семантика и интент

  • Knowledge Graph

Как Google использует шаблоны сайтов и структурированные компоненты для извлечения и расширения наборов сущностей (Entity Set Expansion)
Патент описывает, как Google автоматически расширяет наборы данных (например, таблицы или списки). Система анализирует существующие сущности и ищет новые похожие элементы в интернете. Для этого используются два ключевых метода: анализ повторяющихся шаблонов веб-страниц (Template Analysis) и извлечение данных из структурированных компонентов (HTML-таблиц и списков) на сайтах.
  • US8452791B2
  • 2009-01-16
  • Knowledge Graph

  • Семантика и интент

  • Структура сайта

Как Google использует кластеризацию контента и результаты поиска для определения авторства и формирования профилей сущностей
Google использует механизм для точной ассоциации контента (статей, веб-страниц) с конкретными сущностями (авторами, людьми). Система предварительно группирует похожий контент в кластеры. При запросе имени автора система ранжирует эти кластеры, сравнивая их содержимое с результатами поиска по этому имени. Это позволяет разрешать неоднозначность авторов, формировать точные профили (например, в Google Scholar или Knowledge Graph) и автоматически их обновлять.
  • US9400789B2
  • 2013-07-17
  • Knowledge Graph

  • Семантика и интент

  • SERP

Как Google динамически выбирает и ранжирует факты об объектах в зависимости от запроса пользователя (Основы Knowledge Graph)
Патент описывает создание и использование репозитория фактов (предшественника Knowledge Graph). Система извлекает факты из интернета и связывает их с объектами (сущностями). При поиске Google не просто возвращает список объектов, а динамически выбирает и ранжирует наиболее релевантные факты для каждого объекта, основываясь на конкретном запросе пользователя, а также метриках достоверности и важности.
  • US7774328B2
  • 2006-02-17
  • Knowledge Graph

  • Семантика и интент

  • SERP

Как Google использует графы сущностей и их топологию для семантического понимания запросов и таргетинга контента
Google использует механизм выбора контента (например, рекламы), основанный на свойствах сущностей, а не только на ключевых словах. Система генерирует граф запроса, отражающий сущности и их взаимосвязи из Базы Знаний. Контент выбирается, только если его критерии точно соответствуют как содержанию, так и структуре (топологии) этого графа. Это позволяет учитывать семантический контекст, даже если он не выражен текстом запроса.
  • US9542450B1
  • 2014-04-01
  • Семантика и интент

  • Knowledge Graph

Как Google использует фиды данных для связи продуктов и услуг с сущностями в Knowledge Graph и показа коммерческих предложений в Knowledge Panel
Google позволяет поставщикам контента (например, стриминговым сервисам, интернет-магазинам) загружать фиды данных о своих товарах и услугах. Система автоматически связывает элементы фида с конкретными сущностями (например, фильмами, книгами) и действиями (например, «смотреть онлайн», «купить»). Это позволяет показывать релевантные коммерческие предложения в Knowledge Panel и проводить отдельные аукционы для разных типов действий.
  • US9953085B1
  • 2013-07-01
  • Knowledge Graph

  • Семантика и интент

Как Google определяет сущности (например, болезни) по списку признаков (например, симптомов) в запросе пользователя
Google использует различные методы для ответа на запросы, содержащие список признаков (атрибутов), но не называющие саму сущность. Система определяет, какой тип сущности ищет пользователь (например, медицинское состояние по симптомам), и идентифицирует наиболее релевантные сущности. Для этого анализируется частота упоминания сущностей в результатах поиска по исходному запросу или используются специально сгенерированные комбинированные запросы.
  • US8843466B1
  • 2011-09-27
  • Семантика и интент

  • Knowledge Graph

  • Индексация

Как Google определяет главную тему страницы (Topical Entity), используя графы сущностей и анализ SERP Features
Google анализирует сущности на странице для определения «Topical Entity» (главной темы). Для этого используются графы сущностей, основанные на совместной встречаемости, и анализ результатов поиска. Присутствие сущности в Title/URL и активация специальных SERP features (Shopping, Maps) могут подтвердить главную тему, даже если страница ранжируется низко. Это понимание используется для генерации релевантного дополнительного контента.
  • US10068022B2
  • 2011-06-03
  • Семантика и интент

  • Knowledge Graph

  • SERP

Как Google динамически выбирает, форматирует и приоритизирует контент внутри Панели Знаний
Google использует систему для динамической генерации Панелей Знаний. Для сущности определяются релевантные элементы контента (факты, изображения, события), которые классифицируются и оцениваются по популярности/релевантности (Rank Score). Система выбирает, какие категории контента показать и в каком формате (модуле), основываясь на этих оценках и строгих ограничениях по верстке (Panel Constraints), гарантируя приоритет наиболее важной информации.
  • US9477711B2
  • 2013-03-15
  • Knowledge Graph

  • SERP

  • Семантика и интент

Как Google связывает медиаконтент (видео) с Графом Знаний для улучшения поиска и автоматического тегирования
Google использует систему для связи медиаконтента (например, видео на YouTube) со структурированными данными из Базы Знаний (Knowledge Graph). Описывается, как создаются ассоциации между видео и сущностями путем анализа метаданных, что позволяет пользователям искать контент по идентификаторам сущностей и автоматически тегировать медиафайлы, улучшая их обнаруживаемость.
  • US9189528B1
  • 2013-03-15
  • Knowledge Graph

  • Семантика и интент

  • Мультимедиа

Как Google определяет и ранжирует самые важные факты о сущностях, анализируя поисковые запросы пользователей
Google анализирует логи запросов, чтобы понять, какую информацию пользователи чаще всего ищут о конкретных сущностях (например, «высота» для здания или «альбомы» для музыканта). Система комбинирует данные по конкретной сущности с данными по её типу, чтобы определить и ранжировать наиболее востребованные атрибуты. Эти атрибуты затем используются для формирования блоков с фактами (например, Knowledge Panel) в ответ на запросы, даже если пользователь не спрашивал об этих фактах напрямую.
  • US9047278B1
  • 2012-11-09
  • Knowledge Graph

  • Семантика и интент

Как Google генерирует сниппеты для фактических ответов, требуя близости вопроса и ответа в тексте источника
Патент Google описывает систему ответа на фактические запросы (Fact Query Engine). Для подтверждения факта, извлеченного из Fact Repository (аналог Knowledge Graph), система генерирует сниппеты из исходных веб-документов. Ключевое требование: сниппет должен содержать как термины из запроса пользователя, так и термины ответа, причем система предпочитает фрагменты, где они расположены близко друг к другу (Proximity).
  • US7587387B2
  • 2005-03-31
  • Семантика и интент

  • Knowledge Graph

  • SERP

Как Google использует Граф Знаний для выбора, группировки и ранжирования связанных сущностей в Knowledge Panel
Google использует этот механизм для определения того, какие группы связанных сущностей (например, "Фильмы", "Члены семьи", "Коллеги") показать в Панели Знаний. Система анализирует пути в Графе Знаний, группирует сущности по типу их связи (Path Type) и ранжирует эти группы по популярности и силе связи (Relationship Strength), основанной на совместном упоминании в вебе и запросах.
  • US9411857B1
  • 2013-06-28
  • Knowledge Graph

  • Семантика и интент

Как Google находит ответы на фактологические вопросы, анализируя консенсус сущностей в топе поисковой выдачи
Google использует этот механизм для автоматического ответа на фактологические вопросы путем анализа неструктурированного текста топовых результатов поиска. Система определяет, какая сущность (например, человек, место) чаще всего упоминается на авторитетных страницах. Эта наиболее часто упоминаемая сущность, с учетом нормализации частоты и веса источника, выбирается в качестве ответа.
  • US9477759B2
  • 2013-03-15
  • Семантика и интент

  • Индексация

  • Knowledge Graph

Как Google адаптирует содержимое Панели Знаний под контекст поискового запроса пользователя
Google использует механизм для динамической настройки Панели Знаний. Система анализирует не только главную сущность в запросе, но и дополнительные контекстные термины. На основе этого контекста система переранжировывает факты и контент внутри панели, выделяет наиболее релевантную информацию и меняет порядок блоков, чтобы точнее ответить на интент пользователя.
  • US10402410B2
  • 2015-12-16
  • Семантика и интент

  • Knowledge Graph

  • SERP

Как Google связывает коммерческие действия с сущностями и меняет вид выдачи в зависимости от интента пользователя
Google патентует систему, которая связывает Сущности (например, фильмы, книги, места) с Онлайн-действиями (например, купить, стримить, забронировать). Вместо таргетинга по ключевым словам, партнеры делают ставки на пары «Сущность-Действие». Система определяет, насколько запрос связан с действием, и динамически меняет визуальное представление этих коммерческих предложений в выдаче (например, в Панели знаний), делая их более или менее заметными.
  • US9536259B2
  • 2013-03-05
  • Семантика и интент

  • Knowledge Graph

  • SERP

  • 1
  • 2
  • 3
  • 4
seohardcore