Google использует систему машинного обучения для оценки авторов и аккаунтов на онлайн-платформах, объединяя сигналы качества (E-E-A-T) и популярности (взаимодействия пользователей) в единый показатель. Этот показатель используется для определения того, следует …
Vladimir Ofitserov
Google использует модель машинного обучения для расчета оценки качества сайта (Quality Score). Эта оценка зависит не только от собственных характеристик сайта (например, юзабилити или поведенческих факторов), но и от характеристик …
Google анализирует поведение пользователей на уровне домена (группы ресурсов) для вычисления модификатора ранжирования. Ключевые метрики включают долю повторных кликов (Repeat Click Fraction), долю прямого трафика (Deliberate Visit Fraction) и среднюю …
Google использует агрегированные данные о продолжительности визитов пользователей на сайт для расчета метрики качества этого сайта (Site Quality Score). Система измеряет время взаимодействия (включая Dwell Time — время от клика …
Google использует модели машинного обучения для оценки релевантности пользовательского контента (например, постов в социальных сетях). Система учитывает не только текст поста, но и контекст его автора (биографию, экспертизу, местоположение). Это …
Google рассчитывает метрику авторитетности для веб-сайтов на основе соотношения количества независимых входящих ссылок к количеству брендовых (референсных) запросов. Сайты, имеющие много независимых ссылок относительно их поисковой популярности, получают преимущество. Напротив, …
Google использует ML-модели для прогнозирования ожидаемого объема обсуждений (например, твитов) по теме в реальном времени. Система анализирует разницу между фактической и прогнозируемой активностью (остаточный сигнал), чтобы точно и быстро выявлять …