Google использует алгоритм для определения наиболее авторитетной (официальной) страницы для конкретного бизнеса или адреса. Система анализирует кластер связанных страниц, изучая, как они ссылаются друг на друга, а также совпадение названия …
EEAT и качество
Google анализирует взаимодействие пользователей (клики, время пребывания, вовлеченность) с контентом в Поиске, Соцсетях и Новостных лентах, чтобы определить, в каких темах конкретный источник (сайт или автор) является экспертным. Если источник …
Google оценивает «риск» поискового запроса, анализируя общее качество топовых результатов. Если запрос часто привлекает спам, кликбейт или нежелательный контент (особенно видео), система динамически повышает минимальный порог качества. Контент, не соответствующий …
Google анализирует поведение пользователей на выдаче, создавая "Профили Взаимодействия". Система учитывает продолжительность кликов (Short/Long Clicks), их последовательность (Single/Multiple Clicks, Pogo-sticking) и уточнение запросов. Эти данные используются для оценки удовлетворенности пользователей, …
Google анализирует статистику взаимодействий (кликов) для групп связанных бизнес-листингов (Common Business). Система вычисляет статистически нормальный уровень активности и устанавливает порог (Anomaly Detection Threshold). Резкий всплеск активности выше этого порога (например, …
Google автоматически изучает альтернативные названия и синонимы для сущностей (например, узнает, что «Big Blue» это IBM), анализируя анкорный текст ссылок, ведущих на авторитетные источники фактов об этой сущности. Система фильтрует …
Google определяет, когда неоднозначный запрос (например, "высота Эвереста") на самом деле ищет конкретный ответ. Система сопоставляет запрос с историческими шаблонами поиска (Query Templates). Если этот шаблон связан с явным, валидированным …
Google использует методы для оценки свежести документа, когда дата его обновления неизвестна или ненадежна. Система анализирует даты обновления страниц, которые ссылаются на документ, а также историю появления и удаления этих …
Google использует механизм для определения семантического расстояния между запросами (Generalized Edit Distance). Вместо подсчета изменений символов система анализирует исторические логи, чтобы понять, как пользователи переформулируют запросы. На основе этих данных …
Система перехватывает результаты поиска и проверяет их по реестру, содержащему пользовательские аннотации, метаданные и социальные связи. Затем результаты переупорядочиваются на основе релевантности, которая частично определяется этими аннотациями и метаданными. Пользователям …
Google патентует систему Retrieval-Augmented Generation (RAG) для повышения точности ответов LLM на локальные запросы. Специализированная «Research Model» извлекает актуальные фактические (адреса, часы работы) и субъективные (отзывы, рейтинги) данные из структурированных …
Google улучшает ранжирование, особенно для редких или новых запросов, используя поведенческие данные (клики) из семантически или сессионно связанных запросов. Если данных по исходному запросу недостаточно, система «заимствует» сигналы о кликах …
Google использует механизм переранжирования для обеспечения разнообразия (Diversity) в поисковой выдаче или ленте рекомендаций. Система определяет ключевые признаки (Features) для каждого результата (например, домен, автор, тип контента) и назначает им …
Google использует механизм для корректировки показателей популярности документов (например, кликов). Система определяет «широту» (Query Breadth) запроса. Клики, полученные по широким, общим запросам, считаются менее значимыми индикаторами популярности, чем клики по …
Патент Google описывает функцию браузера для контекстного поиска выделенного текста или изображений. Результаты и связанные запросы отображаются в специальной панели без ухода с исходной страницы. Ключевой механизм: Google использует URL …
Патент Google описывает систему ранжирования результатов для сущностей (например, музыка, фильмы, бронирования). Система использует «Меру Эффективности» (Effectiveness Measure), которая учитывает два ключевых фактора: насколько быстро пользователь может получить контент или …
Google использует итеративный процесс для улучшения классификации контента и выявления спама, анализируя поведенческие сигналы (CTR и продолжительность клика). Если пользователи быстро покидают документ или игнорируют его в выдаче, он помечается …
Google оценивает качество сайта не по общему CTR, а по тому, в ответ на какие запросы он получает клики. Система сегментирует пользовательский фидбек (клики, CTR) по различным параметрам запроса (например, …
Google использует комплексный профиль пользователя (историю поиска, местоположение, социальные связи, календарь, отзывы) для динамического изменения отображения объектов на интерактивных Картах. Система корректирует стандартный рейтинг значимости объектов, делая более заметными те …
Google использует статистический анализ для обнаружения спама и переоптимизации. Система определяет ожидаемое количество связанных концепций (фраз) в типичном документе. Если документ содержит неестественно большое количество связанных фраз по сравнению с …