SEO HARDCORE
  • Разборы патентов
    • Патенты Google
  • Скоро SEO инструменты
  • Скоро SEO аналитика
  • seohardcore
SEO HARDCORE

EEAT и качество в Google: разборы патентов

Детальные разборы патентов Google, связанные с качеством и авторитетностью
  • Ссылки
  • Поведенческие сигналы
  • Антиспам
  • Семантика и интент
  • EEAT и качество
  • SERP
  • Персонализация
  • Индексация
  • Мультимедиа
  • Local SEO
  • Техническое SEO
  • Knowledge Graph
  • Свежесть контента
  • Краулинг
  • Структура сайта
  • Мультиязычность
  • Безопасный поиск
  • Google Shopping
Как Google создает и использует базу «идеальных» ответов (Canonical Content Items) для ответов на вопросы пользователей
Google использует систему для идентификации и создания «канонических элементов контента» — образцовых объяснений тем, часто в формате вопрос-ответ. Система анализирует огромные массивы существующего контента, кластеризует похожие вопросы и ответы и выбирает или синтезирует идеальную версию. Когда пользователь задает вопрос, система сопоставляет его с этой базой данных, чтобы мгновенно предоставить высококачественный, модельный ответ.
  • US9396263B1
  • 2013-10-14
  • Семантика и интент

  • EEAT и качество

Как Google ранжирует сущности (например, людей с одинаковыми именами) с помощью кластеризации, контекстной авторитетности и персонализации
Google использует систему двухуровневого ранжирования для обработки неоднозначных запросов (например, имен людей). Сначала ресурсы группируются в кластеры, представляющие разные сущности. Ресурсы внутри кластера ранжируются на основе их качества и авторитетности внутри этого кластера. Затем сами кластеры ранжируются с учетом релевантности запросу и сильной персонализации (социальные связи и местоположение пользователя).
  • US8645393B1
  • 2011-04-15
  • Персонализация

  • Семантика и интент

  • SERP

Как Google идентифицирует локальных экспертов и использует их отзывы для ранжирования в локальном поиске
Google использует систему для идентификации пользователей, являющихся «экспертами» в конкретных географических областях и категориях бизнеса, основываясь на объеме и качестве их отзывов. При локальном поиске система извлекает мнения этих экспертов и использует их как ключевой сигнал для ранжирования результатов. Система также может персонализировать выбор экспертов, отдавая предпочтение тем, чьи оценки совпадают с предпочтениями пользователя.
  • US9792330B1
  • 2013-04-30
  • Local SEO

  • EEAT и качество

  • Антиспам

Как Google определяет, когда показывать обогащенный результат для сущности, и использует консенсус веба для исправления данных
Google использует механизм для определения того, когда запрос явно относится к конкретной сущности (например, книге). Если один результат значительно доминирует над другими по релевантности, система активирует «обогащенный результат». Этот результат агрегирует данные из разных источников (структурированные данные, веб-страницы, каталоги товаров) и использует наиболее популярные варианты данных из интернета для проверки и исправления информации о сущности.
  • US8577897B2
  • 2011-10-26
  • SERP

  • Семантика и интент

  • EEAT и качество

Как Google использует данные о кликах и пропусках для валидации и удаления неэффективных синонимов в поиске
Google постоянно тестирует правила подстановки (синонимы) для расширения запросов. Этот патент описывает механизм оценки эффективности этих правил с помощью анализа поведения пользователей (клики и пропуски результатов). Если пользователи часто пропускают результаты, содержащие подставленный термин, система автоматически удаляет это правило, очищая понимание запросов от нерелевантных синонимов.
  • US8965875B1
  • 2012-04-10
  • Поведенческие сигналы

  • Семантика и интент

  • EEAT и качество

Как Google определяет оригинальность контента для расчета Авторского Ранга (Author Rank) и влияния на ранжирование
Google использует систему для идентификации оригинального контента и повышения авторитета его создателей. Система разбивает документы на фрагменты (content pieces) и отслеживает их первое появление. Авторы (включая домены) ранжируются на основе количества созданного ими оригинального контента и частоты его копирования другими. Ранг автора затем используется для повышения в выдаче документов этого автора, особенно свежих публикаций.
  • US8983970B1
  • 2012-04-16
  • EEAT и качество

  • Свежесть контента

  • SERP

Как Google оценивает качество и авторитетность новостных источников для ранжирования в Google News
Google использует систему для оценки качества новостных источников на основе 13 различных метрик, включая объем публикаций, скорость освещения событий (Breaking News Score), оригинальность контента (Original Named Entities), размер штата, данные о трафике и репутацию. На основе этих метрик вычисляется "Рейтинг Источника" (Source Rank), который затем используется для повышения позиций статей от авторитетных изданий в новостном поиске.
  • US7577655B2
  • 2003-09-16
  • EEAT и качество

  • SERP

  • Свежесть контента

Как Google определяет тематическую авторитетность источников ("каналов") и агрессивно продвигает их свежий контент
Google идентифицирует "каналы" (сайты, блоги, разделы), которые исторически создают высококачественный контент по определенным темам. Система рассчитывает тематическую авторитетность, учитывая качество контента и сфокусированность канала. Когда авторитетный канал публикует новый контент по своей теме, Google может агрессивно повысить его в выдаче, даже если у контента еще нет ссылок или поведенческих сигналов.
  • US8874558B1
  • 2012-09-11
  • EEAT и качество

  • Свежесть контента

  • Индексация

Как Google использует упоминания бренда в вебе (Webscore) для определения популярности и ранжирования локальных бизнесов
Google рассчитывает метрику «Webscore» для локальных компаний, основанную на количестве упоминаний их названия в интернете. Эта оценка используется для определения «Популярности» (Prominence) бизнеса и влияет на ранжирование в локальном поиске, часто отдавая предпочтение известным компаниям перед теми, что просто находятся ближе. Алгоритм учитывает длину названия и корректирует оценки для сетевых бизнесов.
  • US8122013B1
  • 2006-01-27
  • Local SEO

  • EEAT и качество

  • SERP

Как Google использует авторитетность в веб-поиске для определения порядка ранжирования в Локальном поиске (Local Pack)
Google использует механизм объединения результатов из Универсального (веб) и Локального поиска. Система идентифицирует авторитетные бизнес-сайты в веб-выдаче и оценивает их по локальным критериям. Затем Локальный блок (Local Pack) переранжируется так, чтобы порядок результатов соответствовал их авторитетности в Универсальном поиске. Это подтверждает, что авторитетность сайта в вебе напрямую влияет на его позиции в Локальном поиске.
  • US8392394B1
  • 2010-05-04
  • Local SEO

  • EEAT и качество

  • SERP

Как Google использует официальный сайт компании как эталон для проверки точности данных (NAP) в каталогах и Local SEO
Google автоматически верифицирует данные о локальных компаниях (адрес, телефон, часы работы), сравнивая информацию из сторонних каталогов и агрегаторов с данными, извлеченными с официального сайта компании («Authority Website»). Официальный сайт считается эталоном истины. На основе сравнения рассчитывается «Оценка Точности» (Accuracy Score) для каждого источника. Финальный профиль компании формируется с приоритетом данных с официального сайта и источников с высокой оценкой точности.
  • US20130282699A1
  • 2011-01-14
  • EEAT и качество

  • Local SEO

Как Google оценивает качество новостных источников, кластеризует статьи и ранжирует новости на основе свежести, оригинальности и авторитетности
Детальный разбор основополагающего патента Google News. Система оценивает источники по скорости реакции на события, оригинальности контента и авторитетности (ссылки, просмотры). Новостные сюжеты (кластеры) ранжируются по свежести и качеству источников. Статьи внутри сюжета сортируются с использованием «Модифицированной оценки свежести», которая дает значительное преимущество авторитетным изданиям.
  • US7568148B1
  • 2003-06-30
  • Свежесть контента

  • EEAT и качество

Как Google генерирует поисковые подсказки, анализируя метаданные (Title и Description) авторитетных сайтов и проверяя их грамматику
Google расширяет поисковые подсказки (Autocomplete) за пределы исторических логов, анализируя метаданные документов, такие как заголовки (Title). Система извлекает фразы, проверяет их грамматическую корректность с помощью NLP (POS-tagging) и добавляет в базу подсказок. Приоритет отдается фразам, полученным с авторитетных страниц (высокий Document Score), что позволяет предлагать качественные запросы, даже если их еще никто не искал.
  • US9195706B1
  • 2013-03-01
  • Семантика и интент

  • EEAT и качество

  • Индексация

Как Google автоматически извлекает и анализирует отзывы о компаниях из интернета
Google использует систему для автоматического поиска и анализа отзывов о сущностях (например, компаниях) на веб-страницах. Система идентифицирует информацию о компании (название, адрес), извлекает текст рядом с ней и применяет анализ тональности (Sentiment Analysis), чтобы определить, является ли этот текст отзывом и какова его эмоциональная окраска.
  • US20150112981A1
  • 2009-12-14
  • Local SEO

  • Семантика и интент

  • EEAT и качество

Как Google использует репутацию контент-канала (например, YouTube) для ранжирования отдельных видео в зависимости от типа запроса
Google оценивает контент-каналы (например, YouTube), вычисляя специализированные «Оценки канала» (Channel Scores) для разных типов запросов (например, за свежесть или качество). Эти оценки рассчитываются на основе выбранного подмножества метрик канала и его контента, затем присваиваются отдельным видео и используются для корректировки их рейтинга в поиске.
  • US8949874B1
  • 2013-06-25
  • EEAT и качество

  • Свежесть контента

  • SERP

Как Google использует известность и авторитетность бизнеса (Location Prominence) вместо расстояния для ранжирования в локальном поиске
Google использует механизм дифференцированного ранжирования в локальном поиске. Внутри основной географической области (например, города или видимой карты) результаты ранжируются по «Известности» (Location Prominence), основанной на авторитетности, отзывах и упоминаниях бизнеса. За пределами этой области результаты ранжируются преимущественно по расстоянию. Это позволяет показывать наиболее значимые бизнесы, а не просто ближайшие к условному центру.
  • US7822751B2
  • 2005-05-27
  • Local SEO

  • EEAT и качество

  • SERP

Как Google подмешивает результаты из альтернативных запросов, чтобы вытеснить низкокачественные сайты из топа выдачи
Google использует механизм улучшения качества поисковой выдачи. Если по исходному запросу в топе ранжируется слишком много низкокачественных сайтов, система находит связанный альтернативный запрос, который возвращает высококачественные результаты. Затем эти результаты агрессивно повышаются в ранжировании и подмешиваются в исходную выдачу, чтобы гарантировать пользователю доступ к качественному контенту.
  • US9135307B1
  • 2012-12-27
  • SERP

  • EEAT и качество

Как Google меняет формат выдачи в вертикальном поиске на основе уверенности в интенте и какие факторы использует для оценки качества
Google использует механизм адаптации интерфейса в вертикальном поиске (например, Google Books или Shopping). Если система уверена, что результат №1 значительно релевантнее №2, он отображается заметно крупнее. Патент детализирует факторы оценки качества объекта (Quality Information), такие как репутация автора/бренда, продажи, внешнее признание и ссылочный вес связанных веб-сайтов, что дает ключевые инсайты для E-E-A-T.
  • US9141674B2
  • 2013-03-14
  • EEAT и качество

  • Семантика и интент

  • SERP

Как Google использует внутреннюю структуру сайта и авторитетность для корректировки ранжирования
Google использует механизм для уточнения позиций в поиске, анализируя как внешние сигналы (авторитетность сайта), так и внутренние сигналы (структура сайта, внутренние ссылки). Система вычисляет «Внутрисайтовую оценку ранжирования» для определения важности страницы внутри сайта и использует её для корректировки «Глобальной оценки ранжирования». Однако влияние внутренних факторов ограничивается уровнем доверия к сайту.
  • US8843477B1
  • 2011-10-31
  • Структура сайта

  • Техническое SEO

  • EEAT и качество

Как Google использует машинное обучение для проверки логотипов и названий организаций перед показом в поисковой выдаче (включая рекламу)
Google применяет систему для валидации брендовых ассетов (изображений и названий организаций) перед их отображением в результатах поиска. Система использует ML-модели для двух проверок: является ли изображение приемлемым (не нарушает правила, не имитирует чужие бренды) и верифицирована ли организация (используя платежную информацию для рекламы, органический рейтинг и базы доверенных компаний). Это предотвращает спуфинг и повышает доверие пользователей.
  • US11954167B1
  • 2022-12-21
  • EEAT и качество

  • Антиспам

  • SERP

Как Google агрегирует социальные сигналы (лайки, +1) с канонических URL и верифицированных социальных профилей на авторитетную страницу
Google использует механизм для объединения социальных одобрений (например, лайков, шейров, +1) с разных, но связанных страниц в единый счетчик. Это включает агрегацию сигналов со всех канонических версий URL, а также с официально подтвержденных (через двухстороннюю связь) страниц в социальных сетях. Цель — показать общий уровень популярности контента, избегая фрагментации данных.
  • US20180052807A1
  • 2013-11-14
  • Поведенческие сигналы

  • EEAT и качество

Как Google рассчитывает QDF (Query Deserves Freshness), комбинируя актуальность запроса, возраст документа и качество источника по формуле Q^D
Google использует формулу S' = S * Q^D для корректировки ранжирования. Система определяет, требует ли запрос свежего контента (Q) и насколько свеж и качественен сам документ и его источник (D). Это позволяет экспоненциально повышать новый контент от авторитетных авторов для актуальных тем и понижать устаревший контент.
  • US9189526B1
  • 2013-03-15
  • Свежесть контента

  • EEAT и качество

  • SERP

Как Google использует консенсус между топовыми результатами для валидации и выбора Featured Snippets (Short Answers)
Google использует систему оценки точности коротких ответов (Featured Snippets). Система сравнивает потенциальный ответ из топового результата с контентом других высокоранжированных страниц (контекстными пассажами). Если ответ подтверждается консенсусом между источниками, он получает высокий балл точности и отображается в выдаче. Это снижает вероятность показа неверной или спорной информации в блоках с ответами.
  • US12248529B2
  • 2022-03-09
  • SERP

  • EEAT и качество

Как Google проверяет, выбирает и подтверждает факты из интернета для своей базы знаний (Knowledge Graph)
Google использует многоэтапную систему для проверки фактов, извлеченных из интернета. Чтобы факт попал в базу знаний, он должен быть подтвержден несколькими независимыми источниками. Система оценивает распространенность атрибута и достоверность значения, учитывая авторитетность (например, PageRank) источников. Если источник доказал свою надежность, требования к другим его фактам снижаются или отменяются.
  • US8682913B1
  • 2005-03-31
  • Knowledge Graph

  • EEAT и качество

Как Google борется со спамом в бизнес-профилях (Local SEO), используя контекстуальный анализ и калибровку оценок спама
Google использует систему для обнаружения спамных бизнес-листингов (Local SEO), сравнивая данные из доверенных и ненадежных источников в рамках конкретных бизнес-контекстов (например, «сантехники» против «юристов»). Система выявляет характеристики, статистически связанные со спамом в данной нише, генерирует оценку спама и калибрует её в вероятность с помощью логистической регрессии для точной фильтрации.
  • US8738557B1
  • 2011-07-26
  • Антиспам

  • Local SEO

  • EEAT и качество

Как Google использует контекст автора (Creator Context) для понимания и ранжирования пользовательского контента (UGC) и социальных сетей
Google использует модели машинного обучения для оценки релевантности пользовательского контента (например, постов в социальных сетях). Система учитывает не только текст поста, но и контекст его автора (биографию, экспертизу, местоположение). Это позволяет точнее интерпретировать короткие или неоднозначные публикации и повышать в выдаче контент от авторитетных источников.
  • US20250156488A1
  • 2023-11-15
  • Семантика и интент

  • EEAT и качество

Как Google использует языковые модели и анализ «набивки запросами» (Query Stuffing) для выявления и пессимизации спамного и сгенерированного контента
Google применяет систему для обнаружения бессмысленного контента (спама), вычисляя «Gibberish Score». Эта оценка состоит из двух частей: «Language Model Score», проверяющего статистическую вероятность того, что текст является естественным языком, и «Query Stuffing Score», который выявляет неестественное скопление реальных пользовательских запросов на странице. Ресурсы с низким баллом понижаются в выдаче или удаляются из индекса.
  • US8554769B1
  • 2009-06-17
  • Антиспам

  • SERP

  • EEAT и качество

Как Google использует генеративные ИИ-модели (Seq2Seq) и Actor-Critic для динамического переписывания и верификации запросов на основе задач пользователя
Google использует генеративные нейросетевые модели (Sequence-to-Sequence) для динамического создания вариантов поисковых запросов. Система учитывает контекст и предполагаемую задачу пользователя для генерации уточнений или эквивалентных формулировок. Механизм Actor-Critic (обучение с подкреплением) контролирует этот процесс, итеративно улучшая понимание интента и проверяя точность ответов перед их показом.
  • US11663201B2
  • 2018-04-27
  • Семантика и интент

  • Персонализация

  • EEAT и качество

Как Google выбирает лучшую целевую страницу (Landing Page) для результатов поиска по картинкам
Google использует запатентованный метод для выбора наилучшего контекста для изображения в поиске по картинкам. Когда одно и то же или похожее изображение появляется на нескольких сайтах, система оценивает качество и важность каждой веб-страницы (Web Score). Страница с наивысшей оценкой выбирается в качестве официальной целевой страницы (Landing Page), на которую попадает пользователь при клике на результат.
  • US9158857B2
  • 2012-06-05
  • Мультимедиа

  • EEAT и качество

  • SERP

Как Google принудительно добавляет в выдачу результаты с авторитетных сайтов, используя модифицированные запросы и сайт-ограниченный поиск
Google использует механизм для гарантированного включения результатов с авторитетных сайтов в поисковую выдачу. Если исходный запрос содержит ключевое слово, связанное с авторитетным источником, или если качество стандартной выдачи низкое, система выполняет дополнительный поиск. Этот поиск строго ограничен рамками авторитетного сайта и использует модифицированную (часто агрессивно расширенную) версию исходного запроса. Полученный результат затем внедряется в топ выдачи.
  • US9659064B1
  • 2013-03-15
  • EEAT и качество

  • SERP

  • 1
  • 2
  • 3
  • 4
  • 5
seohardcore